Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
9 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • Authors: orcid Riccardo Valentini;
    Riccardo Valentini
    ORCID
    Harvested from ORCID Public Data File

    Riccardo Valentini in OpenAIRE
    orcid Maurizio Ruzzi;
    Maurizio Ruzzi
    ORCID
    Harvested from ORCID Public Data File

    Maurizio Ruzzi in OpenAIRE
    orcid Maurizio Petruccioli;
    Maurizio Petruccioli
    ORCID
    Harvested from ORCID Public Data File

    Maurizio Petruccioli in OpenAIRE
    orcid Alessandro D’Annibale;
    Alessandro D’Annibale
    ORCID
    Harvested from ORCID Public Data File

    Alessandro D’Annibale in OpenAIRE
    +3 Authors

    Orange peel waste (OPW) was converted into ethanol by consecutive acid-catalysed steam-explosion (ACSE), enzymatic saccharification and fermentation with Saccharomyces cerevisiae F15. The first step was performed in the presence of 0.5% (volume fraction) sulphuric acid at a solid loading of 160 g L−1 using a novel laboratory-scale Direct Steam-Injection Apparatus under different reaction temperatures and times. ACSE at 200 °C for 90 s (or 180 °C for 150 s) yielded the highest solubilization of pectin (∼73%) and a positive effect on the subsequent enzymatic hydrolysis step, that was carried out at 50 °C with an enzyme loading of 6 FPU g−1 cellulose. OPW, pretreated at 180 °C for 150 s, yielded the highest glucose solubilisation degree (∼56%) at the end of the saccharification step, and the maximum ethanol yield coefficient (∼0.495 g g−1) and productivity (4.85 g L−1 h−1) at the end of the 3rd repeated fermentation batch in shaken-flasks.

    addClaim
    48
    citations48
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      addClaim
  • Authors: orcid Riccardo Valentini;
    Riccardo Valentini
    ORCID
    Harvested from ORCID Public Data File

    Riccardo Valentini in OpenAIRE
    orcid Maurizio Ruzzi;
    Maurizio Ruzzi
    ORCID
    Harvested from ORCID Public Data File

    Maurizio Ruzzi in OpenAIRE
    orcid Maurizio Petruccioli;
    Maurizio Petruccioli
    ORCID
    Harvested from ORCID Public Data File

    Maurizio Petruccioli in OpenAIRE
    orcid Alessandro D’Annibale;
    Alessandro D’Annibale
    ORCID
    Harvested from ORCID Public Data File

    Alessandro D’Annibale in OpenAIRE
    +3 Authors

    Orange peel waste (OPW) was converted into ethanol by consecutive acid-catalysed steam-explosion (ACSE), enzymatic saccharification and fermentation with Saccharomyces cerevisiae F15. The first step was performed in the presence of 0.5% (volume fraction) sulphuric acid at a solid loading of 160 g L−1 using a novel laboratory-scale Direct Steam-Injection Apparatus under different reaction temperatures and times. ACSE at 200 °C for 90 s (or 180 °C for 150 s) yielded the highest solubilization of pectin (∼73%) and a positive effect on the subsequent enzymatic hydrolysis step, that was carried out at 50 °C with an enzyme loading of 6 FPU g−1 cellulose. OPW, pretreated at 180 °C for 150 s, yielded the highest glucose solubilisation degree (∼56%) at the end of the saccharification step, and the maximum ethanol yield coefficient (∼0.495 g g−1) and productivity (4.85 g L−1 h−1) at the end of the 3rd repeated fermentation batch in shaken-flasks.

    addClaim
    48
    citations48
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Maurizio Petruccioli;
    Maurizio Petruccioli
    ORCID
    Harvested from ORCID Public Data File

    Maurizio Petruccioli in OpenAIRE
    orcid Zdena Křesinová;
    Zdena Křesinová
    ORCID
    Harvested from ORCID Public Data File

    Zdena Křesinová in OpenAIRE
    orcid Alessandro D’Annibale;
    Alessandro D’Annibale
    ORCID
    Harvested from ORCID Public Data File

    Alessandro D’Annibale in OpenAIRE
    orcid Stefano Covino;
    Stefano Covino
    ORCID
    Harvested from ORCID Public Data File

    Stefano Covino in OpenAIRE
    +5 Authors

    Aim of this work was to investigate the ability of Lentinus (Panus) tigrinus to degrade and detoxify a chlorobenzoate (CBA) mixture composed of mono-, di- and tri-chlorinated isomers. The degradation process was investigated as a function of both the growing medium (i.e. low N Kirk's and malt extract-glucose medium) and cultivation conditions (i.e. stationary and shaken cultures). The majority of CBAs were quantitatively degraded within the early 15 d from spiking with the notable exception of the double ortho-chlorinated compounds, 2,6-di-, 2,3,6-tri- and 2,4,6-tri-CBA. Analysis of the degradation intermediates indicated the occurrence of side chain reduction, hydroxylation and methylation reactions. Although CBAs stimulated laccase production, in vitro experiments with a purified L. tigrinus laccase isoenzyme demonstrated its inability to participate in the initial attack on CBAs even in the presence of redox mediators; similar results were found with a Mn-peroxidase isoenzyme. Conversely, prompt degradation was observed upon 1h incubation of CBAs with a purified microsomal fraction containing cytochrome P-450 monooxygenase. The nature of some reaction products (i.e. hydroxylated derivatives), the dependency of the reaction on NADPH and its susceptibility to either CO or piperonyl butoxide inhibition confirmed the involvement of L. tigrinus cytochrome P-450 in the early steps of CBA degradation.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Hazardous...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Hazardous Materials
    Article . 2013 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    14
    citations14
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Hazardous...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Hazardous Materials
      Article . 2013 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Maurizio Petruccioli;
    Maurizio Petruccioli
    ORCID
    Harvested from ORCID Public Data File

    Maurizio Petruccioli in OpenAIRE
    orcid Zdena Křesinová;
    Zdena Křesinová
    ORCID
    Harvested from ORCID Public Data File

    Zdena Křesinová in OpenAIRE
    orcid Alessandro D’Annibale;
    Alessandro D’Annibale
    ORCID
    Harvested from ORCID Public Data File

    Alessandro D’Annibale in OpenAIRE
    orcid Stefano Covino;
    Stefano Covino
    ORCID
    Harvested from ORCID Public Data File

    Stefano Covino in OpenAIRE
    +5 Authors

    Aim of this work was to investigate the ability of Lentinus (Panus) tigrinus to degrade and detoxify a chlorobenzoate (CBA) mixture composed of mono-, di- and tri-chlorinated isomers. The degradation process was investigated as a function of both the growing medium (i.e. low N Kirk's and malt extract-glucose medium) and cultivation conditions (i.e. stationary and shaken cultures). The majority of CBAs were quantitatively degraded within the early 15 d from spiking with the notable exception of the double ortho-chlorinated compounds, 2,6-di-, 2,3,6-tri- and 2,4,6-tri-CBA. Analysis of the degradation intermediates indicated the occurrence of side chain reduction, hydroxylation and methylation reactions. Although CBAs stimulated laccase production, in vitro experiments with a purified L. tigrinus laccase isoenzyme demonstrated its inability to participate in the initial attack on CBAs even in the presence of redox mediators; similar results were found with a Mn-peroxidase isoenzyme. Conversely, prompt degradation was observed upon 1h incubation of CBAs with a purified microsomal fraction containing cytochrome P-450 monooxygenase. The nature of some reaction products (i.e. hydroxylated derivatives), the dependency of the reaction on NADPH and its susceptibility to either CO or piperonyl butoxide inhibition confirmed the involvement of L. tigrinus cytochrome P-450 in the early steps of CBA degradation.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Hazardous...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Hazardous Materials
    Article . 2013 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    14
    citations14
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Hazardous...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Hazardous Materials
      Article . 2013 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Eleonora Carota;
    Eleonora Carota
    ORCID
    Harvested from ORCID Public Data File

    Eleonora Carota in OpenAIRE
    orcid Silvia Crognale;
    Silvia Crognale
    ORCID
    Harvested from ORCID Public Data File

    Silvia Crognale in OpenAIRE
    orcid Alessandro D'Annibale;
    Alessandro D'Annibale
    ORCID
    Harvested from ORCID Public Data File

    Alessandro D'Annibale in OpenAIRE
    Anna Maria Gallo; +2 Authors

    The increasing demand of plant oils for biodiesel production has highlighted the need for alternative strategies based either on non-food crops or agro-industrial wastes that do not compete with food and feed production. In this context, the combined use of wastewater and oleaginous microorganisms could be a valuable production option. Ricotta cheese whey (RCW), one of the major byproducts of the dairy industry, is produced in very high and steadily increasing amounts and, due to its high organic load, its disposal is cost-prohibitive. In the present study, in order to assess the adequacy of RCW as a growth medium for lipid production, 18 strains of oleaginous yeasts were investigated in shaken flask for their growth and lipid-producing capabilities on this substrate. Among them, Cryptococcus curvatus NRRL Y-1511 and Cryptococcus laurentii UCD 68-201 adequately grew therein producing substantial amounts of lipids (6.8 and 5.1gL-1, respectively). A high similarity between the percent fatty acid methyl esters (FAME) composition of lipids from the former and the latter strain was found with a predominance of oleic acid (52.8 vs. 48.7%) and of total saturated fatty acids (37.9 vs. 40.8%). The subsequent scale transfer of the C. laurentii UCD 68-201 lipid production process on RCW to a 3-L STR led to significantly improved biomass and total lipid productions (14.4 and 9.9gL-1, respectively) with the biodiesel yield amounting to 32.6%. Although the C. laurentii FAME profile was modified upon process transfer, it resembled that of the Jatropha oil, a well established feedstock for biodiesel production. In conclusion, C. laurentii UCD 68-201, for which there is very limited amount of available information, turned out to be a very promising candidate for biodiesel production and wide margins of process improvement might be envisaged.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio istituziona...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    65
    citations65
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Eleonora Carota;
    Eleonora Carota
    ORCID
    Harvested from ORCID Public Data File

    Eleonora Carota in OpenAIRE
    orcid Silvia Crognale;
    Silvia Crognale
    ORCID
    Harvested from ORCID Public Data File

    Silvia Crognale in OpenAIRE
    orcid Alessandro D'Annibale;
    Alessandro D'Annibale
    ORCID
    Harvested from ORCID Public Data File

    Alessandro D'Annibale in OpenAIRE
    Anna Maria Gallo; +2 Authors

    The increasing demand of plant oils for biodiesel production has highlighted the need for alternative strategies based either on non-food crops or agro-industrial wastes that do not compete with food and feed production. In this context, the combined use of wastewater and oleaginous microorganisms could be a valuable production option. Ricotta cheese whey (RCW), one of the major byproducts of the dairy industry, is produced in very high and steadily increasing amounts and, due to its high organic load, its disposal is cost-prohibitive. In the present study, in order to assess the adequacy of RCW as a growth medium for lipid production, 18 strains of oleaginous yeasts were investigated in shaken flask for their growth and lipid-producing capabilities on this substrate. Among them, Cryptococcus curvatus NRRL Y-1511 and Cryptococcus laurentii UCD 68-201 adequately grew therein producing substantial amounts of lipids (6.8 and 5.1gL-1, respectively). A high similarity between the percent fatty acid methyl esters (FAME) composition of lipids from the former and the latter strain was found with a predominance of oleic acid (52.8 vs. 48.7%) and of total saturated fatty acids (37.9 vs. 40.8%). The subsequent scale transfer of the C. laurentii UCD 68-201 lipid production process on RCW to a 3-L STR led to significantly improved biomass and total lipid productions (14.4 and 9.9gL-1, respectively) with the biodiesel yield amounting to 32.6%. Although the C. laurentii FAME profile was modified upon process transfer, it resembled that of the Jatropha oil, a well established feedstock for biodiesel production. In conclusion, C. laurentii UCD 68-201, for which there is very limited amount of available information, turned out to be a very promising candidate for biodiesel production and wide margins of process improvement might be envisaged.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio istituziona...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    65
    citations65
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid bw D'Annibale Alessandro;
    D'Annibale Alessandro
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    D'Annibale Alessandro in OpenAIRE
    orcid Carota Eleonora;
    Carota Eleonora
    ORCID
    Harvested from ORCID Public Data File

    Carota Eleonora in OpenAIRE
    orcid bw Crognale Silvia;
    Crognale Silvia
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Crognale Silvia in OpenAIRE
    orcid Petruccioli Maurizio;
    Petruccioli Maurizio
    ORCID
    Harvested from ORCID Public Data File

    Petruccioli Maurizio in OpenAIRE

    The aqueous extraction of orange peel waste (OPW), the byproduct of the juice extraction process generated annually in massive amounts (21 Mton), yields a carbohydrate-rich liquid fraction, termed orange peel extract (OPE). Several studies highlight that the combination of glycerol, a biodiesel byproduct, with carbohydrate mixtures might boost microbial lipid production. This study performed first a shaken flask screening of 15 oleaginous yeast strains based on their growth and lipid-producing abilities on OPE- and glycerol-based media. This screening enabled the selection of R. toruloides NRRL 1091 for the assessment of the process transfer in a stirred tank reactor (STR). This assessment relied, in particular, on either single- and double-stage feeding fed-batch (SSF-FB and DSF-FB, respectively) processes where OPE served as the primary medium and nitrogen-containing glycerol-OPE mixtures as the feeding one. The continuous supply mode at low dilution rates (0.02 and 0.01 h-1 for SSF-FB and DSF-FB, respectively) starting from the end of the exponential growth of the initial batch phase enabled the temporal extension of biomass and lipid production. The SSF-FB and DSF-FB processes attained high biomass and lipid volumetric productions (LVP) and ensured significant lipid accumulation on a dry cell basis (YL/X). The SSF-FB process led to LVP of 20.6 g L-1 after 104 h with volumetric productivity (r L) of 0.20 g L-1 h-1 and YL/X of 0.80; the DSF-FB process yielded LVP, r L and YL/X values equal to 15.92 g L-1, 0.11 g L-1 h-1 and 0.65, respectively. The fatty acid profiles of lipids from both fed-batch processes were not significantly different and resembled that of Jatropha oil, a vastly used feedstock for biodiesel production. These results suggest that OPE constitutes an excellent basis for the fed-batch production of R. toruloides lipids, and this process might afford a further option in OPW-based biorefinery.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Heliyonarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Heliyon
    Article . 2020 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Heliyon
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    PubMed Central
    Other literature type . 2020
    License: CC BY
    Data sources: PubMed Central
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Heliyon
    Article . 2020
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2020
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2020
    License: CC BY
    Data sources: ZENODO
    addClaim
    Access Routes
    Green
    gold
    11
    citations11
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    visibility3
    visibilityviews3
    downloaddownloads2
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Heliyonarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Heliyon
      Article . 2020 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Heliyon
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      PubMed Central
      Other literature type . 2020
      License: CC BY
      Data sources: PubMed Central
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Heliyon
      Article . 2020
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2020
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2020
      License: CC BY
      Data sources: ZENODO
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid bw D'Annibale Alessandro;
    D'Annibale Alessandro
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    D'Annibale Alessandro in OpenAIRE
    orcid Carota Eleonora;
    Carota Eleonora
    ORCID
    Harvested from ORCID Public Data File

    Carota Eleonora in OpenAIRE
    orcid bw Crognale Silvia;
    Crognale Silvia
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Crognale Silvia in OpenAIRE
    orcid Petruccioli Maurizio;
    Petruccioli Maurizio
    ORCID
    Harvested from ORCID Public Data File

    Petruccioli Maurizio in OpenAIRE

    The aqueous extraction of orange peel waste (OPW), the byproduct of the juice extraction process generated annually in massive amounts (21 Mton), yields a carbohydrate-rich liquid fraction, termed orange peel extract (OPE). Several studies highlight that the combination of glycerol, a biodiesel byproduct, with carbohydrate mixtures might boost microbial lipid production. This study performed first a shaken flask screening of 15 oleaginous yeast strains based on their growth and lipid-producing abilities on OPE- and glycerol-based media. This screening enabled the selection of R. toruloides NRRL 1091 for the assessment of the process transfer in a stirred tank reactor (STR). This assessment relied, in particular, on either single- and double-stage feeding fed-batch (SSF-FB and DSF-FB, respectively) processes where OPE served as the primary medium and nitrogen-containing glycerol-OPE mixtures as the feeding one. The continuous supply mode at low dilution rates (0.02 and 0.01 h-1 for SSF-FB and DSF-FB, respectively) starting from the end of the exponential growth of the initial batch phase enabled the temporal extension of biomass and lipid production. The SSF-FB and DSF-FB processes attained high biomass and lipid volumetric productions (LVP) and ensured significant lipid accumulation on a dry cell basis (YL/X). The SSF-FB process led to LVP of 20.6 g L-1 after 104 h with volumetric productivity (r L) of 0.20 g L-1 h-1 and YL/X of 0.80; the DSF-FB process yielded LVP, r L and YL/X values equal to 15.92 g L-1, 0.11 g L-1 h-1 and 0.65, respectively. The fatty acid profiles of lipids from both fed-batch processes were not significantly different and resembled that of Jatropha oil, a vastly used feedstock for biodiesel production. These results suggest that OPE constitutes an excellent basis for the fed-batch production of R. toruloides lipids, and this process might afford a further option in OPW-based biorefinery.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Heliyonarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Heliyon
    Article . 2020 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Heliyon
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    PubMed Central
    Other literature type . 2020
    License: CC BY
    Data sources: PubMed Central
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Heliyon
    Article . 2020
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2020
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2020
    License: CC BY
    Data sources: ZENODO
    addClaim
    Access Routes
    Green
    gold
    11
    citations11
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    visibility3
    visibilityviews3
    downloaddownloads2
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Heliyonarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Heliyon
      Article . 2020 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Heliyon
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      PubMed Central
      Other literature type . 2020
      License: CC BY
      Data sources: PubMed Central
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Heliyon
      Article . 2020
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2020
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2020
      License: CC BY
      Data sources: ZENODO
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Silvia Crognale; orcid Federico Liuzzi;
    Federico Liuzzi
    ORCID
    Harvested from ORCID Public Data File

    Federico Liuzzi in OpenAIRE
    orcid Alessandro D'Annibale;
    Alessandro D'Annibale
    ORCID
    Harvested from ORCID Public Data File

    Alessandro D'Annibale in OpenAIRE
    orcid Isabella de Bari;
    Isabella de Bari
    ORCID
    Harvested from ORCID Public Data File

    Isabella de Bari in OpenAIRE
    +1 Authors

    Abstract The production of seed oils from Cynara cardunculus generates huge amounts of lignocellulosic residues which can be exploited according to a cascade approach. In this paper, residual cardoon biomass (RCB) was tested as a growth substrate for the solid-state production of cellulolytic cocktails by species known to produce glucose-tolerant β-glucosidase isoenzymes. Best productions were obtained with 10-d-old Aspergillus tubingensis cultures on RCB supplemented with wheat bran (200 g kg−1) yielding β-glucosidase and endo-β-1,4-glucanase activities as high as (25 and 4) IU g−1, respectively, and 4 FPU g−1. The saccharification performance of the obtained cocktail tested on acid-catalysed steam-exploded RCB at low solid loading (25 g dm−3) was around 53% at 20 FPU g−1 cellulose. These performance were significantly enhanced by adding the xylanase-rich NS 22083 commercial formulation, reaching glucose yields higher than 80% after 72 h incubation. The use of the catalytic additive was optimized by a statistical approach, based on factorial analysis. A comparison of the performance of the A. tubingensis reinforced cocktail with the Cellic®CTec2 taken as benchmark formulation was done at the same enzyme load and performed at industrially relevant solid loadings, namely at (100 and 200) g dm−3. This comparison showed that Cellic®CTec2 led to only slightly higher glucose yields while an opposite outcome was observed for xylose yields, irrespective of the solid loading conditions. Thus, this study shows that an in-house enzyme production, based on the solid-state conversion of an industrial byproduct, able of yielding cellulolytic cocktails with substantial saccharification performance is feasible.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biomass and Bioenerg...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biomass and Bioenergy
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    18
    citations18
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Silvia Crognale; orcid Federico Liuzzi;
    Federico Liuzzi
    ORCID
    Harvested from ORCID Public Data File

    Federico Liuzzi in OpenAIRE
    orcid Alessandro D'Annibale;
    Alessandro D'Annibale
    ORCID
    Harvested from ORCID Public Data File

    Alessandro D'Annibale in OpenAIRE
    orcid Isabella de Bari;
    Isabella de Bari
    ORCID
    Harvested from ORCID Public Data File

    Isabella de Bari in OpenAIRE
    +1 Authors

    Abstract The production of seed oils from Cynara cardunculus generates huge amounts of lignocellulosic residues which can be exploited according to a cascade approach. In this paper, residual cardoon biomass (RCB) was tested as a growth substrate for the solid-state production of cellulolytic cocktails by species known to produce glucose-tolerant β-glucosidase isoenzymes. Best productions were obtained with 10-d-old Aspergillus tubingensis cultures on RCB supplemented with wheat bran (200 g kg−1) yielding β-glucosidase and endo-β-1,4-glucanase activities as high as (25 and 4) IU g−1, respectively, and 4 FPU g−1. The saccharification performance of the obtained cocktail tested on acid-catalysed steam-exploded RCB at low solid loading (25 g dm−3) was around 53% at 20 FPU g−1 cellulose. These performance were significantly enhanced by adding the xylanase-rich NS 22083 commercial formulation, reaching glucose yields higher than 80% after 72 h incubation. The use of the catalytic additive was optimized by a statistical approach, based on factorial analysis. A comparison of the performance of the A. tubingensis reinforced cocktail with the Cellic®CTec2 taken as benchmark formulation was done at the same enzyme load and performed at industrially relevant solid loadings, namely at (100 and 200) g dm−3. This comparison showed that Cellic®CTec2 led to only slightly higher glucose yields while an opposite outcome was observed for xylose yields, irrespective of the solid loading conditions. Thus, this study shows that an in-house enzyme production, based on the solid-state conversion of an industrial byproduct, able of yielding cellulolytic cocktails with substantial saccharification performance is feasible.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biomass and Bioenerg...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biomass and Bioenergy
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    18
    citations18
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Mauro Moresi;
    Mauro Moresi
    ORCID
    Harvested from ORCID Public Data File

    Mauro Moresi in OpenAIRE
    orcid Silvia Crognale;
    Silvia Crognale
    ORCID
    Harvested from ORCID Public Data File

    Silvia Crognale in OpenAIRE
    Guglielmo Santi; orcid Maurizio Petruccioli;
    Maurizio Petruccioli
    ORCID
    Harvested from ORCID Public Data File

    Maurizio Petruccioli in OpenAIRE
    +2 Authors

    Orange peel waste was converted into ethanol by consecutive acid-catalyzed steam-explosion (ACSE), enzymatic saccharification, and fermentation with Saccharomyces cerevisiae F15. With the aim of increasing the concentration of fermentable sugars in the hydrolysate and to fully recycle the spent acid liquor as the suspending medium for saccharification, the technical feasibility of increasing the solid loading in the ACSE step from 160 to 480 g L−1 was assessed. At high solid loading in the ACSE pretreatment (HSLAP), the solubilization degrees of polysaccharides were lower while those of potential inhibitors (e.g., acetic and formic acids and phenols) were generally higher than those found at low solid loading (LSLAP). However, residual solids from both solid loadings showed similar susceptibility to enzymatic saccharification (ES) in a 7-L stirred-tank reactor (STR) (cellulase, 12 FPU g−1 cellulose; pectinase, 25 IU g−1 dry matter; 72 h incubation at 50 °C). Fermentation was performed in a 1-L STR along five repeated batches with the first one being used to enable yeast proliferation. By using the hydrolysates arising from the HSLAP-ES combination, it was possible to rely on a fermentation medium with a 2.5-fold higher concentration of simple sugars and to double the ethanol concentration in the final beer to be distilled of. However, the higher content of inhibitory compounds in hydrolysates from HSLAP-ES than in the LSLAP-ES ones led to a reduction in the ethanol yield per unit substrate consumed (0.49 vs. 0.41 g g−1, respectively) and overall productivity (3.4 vs. 2.7 g h−1, respectively).

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao BioEnergy Researcharrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    BioEnergy Research
    Article . 2015 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    17
    citations17
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao BioEnergy Researcharrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      BioEnergy Research
      Article . 2015 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Mauro Moresi;
    Mauro Moresi
    ORCID
    Harvested from ORCID Public Data File

    Mauro Moresi in OpenAIRE
    orcid Silvia Crognale;
    Silvia Crognale
    ORCID
    Harvested from ORCID Public Data File

    Silvia Crognale in OpenAIRE
    Guglielmo Santi; orcid Maurizio Petruccioli;
    Maurizio Petruccioli
    ORCID
    Harvested from ORCID Public Data File

    Maurizio Petruccioli in OpenAIRE
    +2 Authors

    Orange peel waste was converted into ethanol by consecutive acid-catalyzed steam-explosion (ACSE), enzymatic saccharification, and fermentation with Saccharomyces cerevisiae F15. With the aim of increasing the concentration of fermentable sugars in the hydrolysate and to fully recycle the spent acid liquor as the suspending medium for saccharification, the technical feasibility of increasing the solid loading in the ACSE step from 160 to 480 g L−1 was assessed. At high solid loading in the ACSE pretreatment (HSLAP), the solubilization degrees of polysaccharides were lower while those of potential inhibitors (e.g., acetic and formic acids and phenols) were generally higher than those found at low solid loading (LSLAP). However, residual solids from both solid loadings showed similar susceptibility to enzymatic saccharification (ES) in a 7-L stirred-tank reactor (STR) (cellulase, 12 FPU g−1 cellulose; pectinase, 25 IU g−1 dry matter; 72 h incubation at 50 °C). Fermentation was performed in a 1-L STR along five repeated batches with the first one being used to enable yeast proliferation. By using the hydrolysates arising from the HSLAP-ES combination, it was possible to rely on a fermentation medium with a 2.5-fold higher concentration of simple sugars and to double the ethanol concentration in the final beer to be distilled of. However, the higher content of inhibitory compounds in hydrolysates from HSLAP-ES than in the LSLAP-ES ones led to a reduction in the ethanol yield per unit substrate consumed (0.49 vs. 0.41 g g−1, respectively) and overall productivity (3.4 vs. 2.7 g h−1, respectively).

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao BioEnergy Researcharrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    BioEnergy Research
    Article . 2015 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    17
    citations17
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao BioEnergy Researcharrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      BioEnergy Research
      Article . 2015 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim
  • Authors: G. Santi; orcid A. D'Annibale;
    A. D'Annibale
    ORCID
    Harvested from ORCID Public Data File

    A. D'Annibale in OpenAIRE
    orcid A. Eshel;
    A. Eshel
    ORCID
    Harvested from ORCID Public Data File

    A. Eshel in OpenAIRE
    orcid bw A. Zilberstein;
    A. Zilberstein
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    A. Zilberstein in OpenAIRE
    +5 Authors

    Abstract Three different Tamarix species, namely Tamarix aphylla, T. aphylla “Erect”-type and Tamarix jordanis, were grown in an experimental field under extreme desert conditions and irrigated with either reclaimed sewage or brackish water. Depending on both species and source of irrigation, the above-ground biomass production ranged from 18 to 36 Mg ha−1 in the first year. Among the three chemically characterized Tamarix species, T. jordanis was selected due to its higher cellulose content, and lower hemicellulose and phenol contents so as to outline a preliminary process flow sheet for ethanol production. This included steam-injection heating under acidic conditions (200 °C; 90 s; 0.5% H2SO4; 160 g L−1 solid loading) using a novel lab-scale Direct Steam Injection Apparatus, enzymatic saccharification (50 °C; pH 5.0; 200 g L−1 solid loading; 20 FPU g−1 cellulose) and subsequent ethanolic fermentation (30 °C; Saccharomyces cerevisiae F-15 as the inoculum). Lab-scale fermentation runs were carried out in a 3-L stirred bioreactor in repeated-batch mode and showed an almost quantitative conversion of glucose into ethanol (0.507 ± 0.006 g g−1), thus leading to a satisfactory overall process ethanol yield of about 145 L Mg−1 Tamarix biomass.

    addClaim
    19
    citations19
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • Authors: G. Santi; orcid A. D'Annibale;
    A. D'Annibale
    ORCID
    Harvested from ORCID Public Data File

    A. D'Annibale in OpenAIRE
    orcid A. Eshel;
    A. Eshel
    ORCID
    Harvested from ORCID Public Data File

    A. Eshel in OpenAIRE
    orcid bw A. Zilberstein;
    A. Zilberstein
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    A. Zilberstein in OpenAIRE
    +5 Authors

    Abstract Three different Tamarix species, namely Tamarix aphylla, T. aphylla “Erect”-type and Tamarix jordanis, were grown in an experimental field under extreme desert conditions and irrigated with either reclaimed sewage or brackish water. Depending on both species and source of irrigation, the above-ground biomass production ranged from 18 to 36 Mg ha−1 in the first year. Among the three chemically characterized Tamarix species, T. jordanis was selected due to its higher cellulose content, and lower hemicellulose and phenol contents so as to outline a preliminary process flow sheet for ethanol production. This included steam-injection heating under acidic conditions (200 °C; 90 s; 0.5% H2SO4; 160 g L−1 solid loading) using a novel lab-scale Direct Steam Injection Apparatus, enzymatic saccharification (50 °C; pH 5.0; 200 g L−1 solid loading; 20 FPU g−1 cellulose) and subsequent ethanolic fermentation (30 °C; Saccharomyces cerevisiae F-15 as the inoculum). Lab-scale fermentation runs were carried out in a 3-L stirred bioreactor in repeated-batch mode and showed an almost quantitative conversion of glucose into ethanol (0.507 ± 0.006 g g−1), thus leading to a satisfactory overall process ethanol yield of about 145 L Mg−1 Tamarix biomass.

    addClaim
    19
    citations19
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Federici E.;
    Federici E.
    ORCID
    Harvested from ORCID Public Data File

    Federici E. in OpenAIRE
    Giubilei M. A.; orcid Covino S.;
    Covino S.
    ORCID
    Harvested from ORCID Public Data File

    Covino S. in OpenAIRE
    orcid ZANAROLI, GIULIO;
    ZANAROLI, GIULIO
    ORCID
    Harvested from ORCID Public Data File

    ZANAROLI, GIULIO in OpenAIRE
    +3 Authors

    Objective of this study was to assess the single or combined effect of a plant oil and a lignocellulosic waste, namely soybean oil (SO) and maize stalks (MS), respectively, on resident microbiota and bioremediation performances of a soil historically contaminated by medium to highly chlorinated PCBs. Higher concentrations of both biphenyl- and chlorobenzoate-degrading cultivable bacteria were found in the MS-amended microcosms (MSM) than the non amended or SO-amended ones after 30 d incubation at 28°C. Fungal growth, instead, was strikingly stimulated in the microcosms that had undergone concomitant MS and SO supplementation (MS-SOM). Denaturing gradient gel electrophoresis analyses of 16S and 18S rRNA genes showed that both amendments promoted a remarkable increase in both bacterial and fungal biodiversity. The abundances of biphenyl-2,3-dioxygenase (bph) and that of catechol-2,3-dioxygenase (C230) genes in the non-amended contaminated soil were constant over time. Conversely, after 60 d incubation, bph and C230 abundances increased 2.8- and 61-fold in the MSM, respectively, and, in the MS-SOM, 1.4- and 46-fold, respectively, with respect to the zero time point. Although the overall PCB removal was not positively affected by the amendments, the concomitant presence of both MS and SO led to significantly higher depletions of hexa-, hepta-, octa- and nona-chlorinated congeners than in the non-amended microcosms (i.e. 24.6, 22, 20.5 and 9.5%, versus 19.4, 16.4, 14.7 and 6.1%, respectively). In all microcosms, PCB degradation was negatively correlated with hydrophobicity, organic matter/water partition coefficient, molecular weight and extent of chlorination of the pollutants with the notable exception of the MS-SOM ones where such a relationship was less stringent.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ New Biotechnologyarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    New Biotechnology
    Article . 2012 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    23
    citations23
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ New Biotechnologyarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      New Biotechnology
      Article . 2012 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Federici E.;
    Federici E.
    ORCID
    Harvested from ORCID Public Data File

    Federici E. in OpenAIRE
    Giubilei M. A.; orcid Covino S.;
    Covino S.
    ORCID
    Harvested from ORCID Public Data File

    Covino S. in OpenAIRE
    orcid ZANAROLI, GIULIO;
    ZANAROLI, GIULIO
    ORCID
    Harvested from ORCID Public Data File

    ZANAROLI, GIULIO in OpenAIRE
    +3 Authors

    Objective of this study was to assess the single or combined effect of a plant oil and a lignocellulosic waste, namely soybean oil (SO) and maize stalks (MS), respectively, on resident microbiota and bioremediation performances of a soil historically contaminated by medium to highly chlorinated PCBs. Higher concentrations of both biphenyl- and chlorobenzoate-degrading cultivable bacteria were found in the MS-amended microcosms (MSM) than the non amended or SO-amended ones after 30 d incubation at 28°C. Fungal growth, instead, was strikingly stimulated in the microcosms that had undergone concomitant MS and SO supplementation (MS-SOM). Denaturing gradient gel electrophoresis analyses of 16S and 18S rRNA genes showed that both amendments promoted a remarkable increase in both bacterial and fungal biodiversity. The abundances of biphenyl-2,3-dioxygenase (bph) and that of catechol-2,3-dioxygenase (C230) genes in the non-amended contaminated soil were constant over time. Conversely, after 60 d incubation, bph and C230 abundances increased 2.8- and 61-fold in the MSM, respectively, and, in the MS-SOM, 1.4- and 46-fold, respectively, with respect to the zero time point. Although the overall PCB removal was not positively affected by the amendments, the concomitant presence of both MS and SO led to significantly higher depletions of hexa-, hepta-, octa- and nona-chlorinated congeners than in the non-amended microcosms (i.e. 24.6, 22, 20.5 and 9.5%, versus 19.4, 16.4, 14.7 and 6.1%, respectively). In all microcosms, PCB degradation was negatively correlated with hydrophobicity, organic matter/water partition coefficient, molecular weight and extent of chlorination of the pollutants with the notable exception of the MS-SOM ones where such a relationship was less stringent.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ New Biotechnologyarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    New Biotechnology
    Article . 2012 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    23
    citations23
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ New Biotechnologyarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      New Biotechnology
      Article . 2012 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Covino, Stefano;
    Covino, Stefano
    ORCID
    Harvested from ORCID Public Data File

    Covino, Stefano in OpenAIRE
    Svobodová, Kateřina; orcid Křesinová, Zdena;
    Křesinová, Zdena
    ORCID
    Harvested from ORCID Public Data File

    Křesinová, Zdena in OpenAIRE
    orcid Petruccioli, Maurizio;
    Petruccioli, Maurizio
    ORCID
    Harvested from ORCID Public Data File

    Petruccioli, Maurizio in OpenAIRE
    +4 Authors

    The ability of stationary and shaken Lentinus tigrinus CBS 577.79 liquid cultures to degrade a mixture of polycyclic aromatic hydrocarbons (PAHs) in N-rich (i.e., malt extract glucose, MEG) and in N-limited (low-N Kirk's medium, LNKM) media was investigated. Best results were obtained in shaken cultures where PAHs were degraded by 91% and 97% in MEG and LNKM, respectively; in stationary cultures, on the contrary, the degradation was never higher than 50%. Laccase activity was predominant on MEG while Mn-peroxidase (MnP) was preferentially produced in LNKM. The identification of degradation products showed the presence of several PAH derivatives, such as quinones, dicarboxylated and ring fission derivatives, presumably derived from the action of lignin-modifying enzymes. The presence of some degradation products (e.g., hydroxylated derivatives of anthrone and phenanthrene 9,10-dihydrodiol) suggested the possible involvement of cytochrome P-450-epoxide hydrolase system, the active form of which was found in 7-day-old cultures on MEG. In vitro experiments showed that the MnP from L. tigrinus had wider PAH substrate range and higher oxidation ability than the laccase produced by the same strain.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioresource Technology
    Article . 2010 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    53
    citations53
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Bioresource Technology
      Article . 2010 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Covino, Stefano;
    Covino, Stefano
    ORCID
    Harvested from ORCID Public Data File

    Covino, Stefano in OpenAIRE
    Svobodová, Kateřina; orcid Křesinová, Zdena;
    Křesinová, Zdena
    ORCID
    Harvested from ORCID Public Data File

    Křesinová, Zdena in OpenAIRE
    orcid Petruccioli, Maurizio;
    Petruccioli, Maurizio
    ORCID
    Harvested from ORCID Public Data File

    Petruccioli, Maurizio in OpenAIRE
    +4 Authors

    The ability of stationary and shaken Lentinus tigrinus CBS 577.79 liquid cultures to degrade a mixture of polycyclic aromatic hydrocarbons (PAHs) in N-rich (i.e., malt extract glucose, MEG) and in N-limited (low-N Kirk's medium, LNKM) media was investigated. Best results were obtained in shaken cultures where PAHs were degraded by 91% and 97% in MEG and LNKM, respectively; in stationary cultures, on the contrary, the degradation was never higher than 50%. Laccase activity was predominant on MEG while Mn-peroxidase (MnP) was preferentially produced in LNKM. The identification of degradation products showed the presence of several PAH derivatives, such as quinones, dicarboxylated and ring fission derivatives, presumably derived from the action of lignin-modifying enzymes. The presence of some degradation products (e.g., hydroxylated derivatives of anthrone and phenanthrene 9,10-dihydrodiol) suggested the possible involvement of cytochrome P-450-epoxide hydrolase system, the active form of which was found in 7-day-old cultures on MEG. In vitro experiments showed that the MnP from L. tigrinus had wider PAH substrate range and higher oxidation ability than the laccase produced by the same strain.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioresource Technology
    Article . 2010 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    53
    citations53
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Bioresource Technology
      Article . 2010 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
Powered by OpenAIRE graph