- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Abraham Lauer; Jesse Devaney; Chanh Kieu; Ben Kravitz; Travis A. O'Brien; Scott M. Robeson; Paul W. Staten; The Anh Vu;doi: 10.1002/gdj3.188
AbstractClimate change is expected to have far‐reaching effects at both the global and regional scale, but local effects are difficult to determine from coarse‐resolution climate studies. Dynamical downscaling can provide insight into future climate projections on local scales. Here, we present a new dynamically downscaled dataset for Indiana and the surrounding regions. Output from the Community Earth System Model (CESM) version 1 is downscaled using the Weather Research and Forecasting model (WRF). Simulations are run with a 24‐hr reinitialization strategy and a 12‐hr spin‐up window. WRF output is bias corrected to the National Centers for Environmental Protection/National Center for Atmospheric Research 40‐year Reanalysis project (NCEP) using a modified quantile mapping method. Bias‐corrected 2‐m air temperature and accumulated precipitation are the initial focus, with additional variables planned for future releases. Regional climate change signals agree well with larger global studies, and local fine‐scaled features are visible in the resulting dataset, such as urban heat islands, frontal passages, and orographic temperature gradients. This high‐resolution climate dataset could be used for down‐stream applications focused on impacts across the domain, such as urban planning, energy usage, water resources, agriculture and public health.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/gdj3.188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/gdj3.188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Abraham Lauer; Jesse Devaney; Chanh Kieu; Ben Kravitz; Travis A. O'Brien; Scott M. Robeson; Paul W. Staten; The Anh Vu;doi: 10.1002/gdj3.188
AbstractClimate change is expected to have far‐reaching effects at both the global and regional scale, but local effects are difficult to determine from coarse‐resolution climate studies. Dynamical downscaling can provide insight into future climate projections on local scales. Here, we present a new dynamically downscaled dataset for Indiana and the surrounding regions. Output from the Community Earth System Model (CESM) version 1 is downscaled using the Weather Research and Forecasting model (WRF). Simulations are run with a 24‐hr reinitialization strategy and a 12‐hr spin‐up window. WRF output is bias corrected to the National Centers for Environmental Protection/National Center for Atmospheric Research 40‐year Reanalysis project (NCEP) using a modified quantile mapping method. Bias‐corrected 2‐m air temperature and accumulated precipitation are the initial focus, with additional variables planned for future releases. Regional climate change signals agree well with larger global studies, and local fine‐scaled features are visible in the resulting dataset, such as urban heat islands, frontal passages, and orographic temperature gradients. This high‐resolution climate dataset could be used for down‐stream applications focused on impacts across the domain, such as urban planning, energy usage, water resources, agriculture and public health.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/gdj3.188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/gdj3.188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 United StatesPublisher:Wiley Funded by:FCT | ATLACE, NSF | NRT: A training incubator...FCT| ATLACE ,NSF| NRT: A training incubator for addressing urban environmental change from Ridge to Reef (R2R)Travis Allen O'Brien; Michael F Wehner; Ashley E. Payne; Christine A Shields; Jonathan J. Rutz; L. Ruby Leung; F. Martin Ralph; Allison B. Marquardt Collow; Irina Gorodetskaya; Bin Guan; Juan Manuel Lora; Elizabeth McClenny; Kyle M. Nardi; Alexandre M. Ramos; Ricardo Tomé; Chandan Sarangi; Eric Jay Shearer; Paul Ullrich; Colin M. Zarzycki; Burlen Loring; Huanping Huang; Héctor Alejandro Inda Díaz; Alan M. Rhoades; Yang Zhou;doi: 10.1002/essoar.10504170.1 , 10.1002/essoar.10504170.4 , 10.1029/2021jd036013 , 10.1002/essoar.10504170.3 , 10.1002/essoar.10504170.2
pmid: 35859545
pmc: PMC9285484
handle: 2027.42/171990
doi: 10.1002/essoar.10504170.1 , 10.1002/essoar.10504170.4 , 10.1029/2021jd036013 , 10.1002/essoar.10504170.3 , 10.1002/essoar.10504170.2
pmid: 35859545
pmc: PMC9285484
handle: 2027.42/171990
AbstractThe Atmospheric River (AR) Tracking Method Intercomparison Project (ARTMIP) is a community effort to systematically assess how the uncertainties from AR detectors (ARDTs) impact our scientific understanding of ARs. This study describes the ARTMIP Tier 2 experimental design and initial results using the Coupled Model Intercomparison Project (CMIP) Phases 5 and 6 multi‐model ensembles. We show that AR statistics from a given ARDT in CMIP5/6 historical simulations compare remarkably well with the MERRA‐2 reanalysis. In CMIP5/6 future simulations, most ARDTs project a global increase in AR frequency, counts, and sizes, especially along the western coastlines of the Pacific and Atlantic oceans. We find that the choice of ARDT is the dominant contributor to the uncertainty in projected AR frequency when compared with model choice. These results imply that new projects investigating future changes in ARs should explicitly consider ARDT uncertainty as a core part of the experimental design.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/68k4c319Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/0797d5c1Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research AtmospheresArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaUniversity of Michigan: Deep BlueArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Michigan: Deep BlueArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/essoar.10504170.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 54 citations 54 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/68k4c319Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/0797d5c1Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research AtmospheresArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaUniversity of Michigan: Deep BlueArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Michigan: Deep BlueArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/essoar.10504170.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 United StatesPublisher:Wiley Funded by:FCT | ATLACE, NSF | NRT: A training incubator...FCT| ATLACE ,NSF| NRT: A training incubator for addressing urban environmental change from Ridge to Reef (R2R)Travis Allen O'Brien; Michael F Wehner; Ashley E. Payne; Christine A Shields; Jonathan J. Rutz; L. Ruby Leung; F. Martin Ralph; Allison B. Marquardt Collow; Irina Gorodetskaya; Bin Guan; Juan Manuel Lora; Elizabeth McClenny; Kyle M. Nardi; Alexandre M. Ramos; Ricardo Tomé; Chandan Sarangi; Eric Jay Shearer; Paul Ullrich; Colin M. Zarzycki; Burlen Loring; Huanping Huang; Héctor Alejandro Inda Díaz; Alan M. Rhoades; Yang Zhou;doi: 10.1002/essoar.10504170.1 , 10.1002/essoar.10504170.4 , 10.1029/2021jd036013 , 10.1002/essoar.10504170.3 , 10.1002/essoar.10504170.2
pmid: 35859545
pmc: PMC9285484
handle: 2027.42/171990
doi: 10.1002/essoar.10504170.1 , 10.1002/essoar.10504170.4 , 10.1029/2021jd036013 , 10.1002/essoar.10504170.3 , 10.1002/essoar.10504170.2
pmid: 35859545
pmc: PMC9285484
handle: 2027.42/171990
AbstractThe Atmospheric River (AR) Tracking Method Intercomparison Project (ARTMIP) is a community effort to systematically assess how the uncertainties from AR detectors (ARDTs) impact our scientific understanding of ARs. This study describes the ARTMIP Tier 2 experimental design and initial results using the Coupled Model Intercomparison Project (CMIP) Phases 5 and 6 multi‐model ensembles. We show that AR statistics from a given ARDT in CMIP5/6 historical simulations compare remarkably well with the MERRA‐2 reanalysis. In CMIP5/6 future simulations, most ARDTs project a global increase in AR frequency, counts, and sizes, especially along the western coastlines of the Pacific and Atlantic oceans. We find that the choice of ARDT is the dominant contributor to the uncertainty in projected AR frequency when compared with model choice. These results imply that new projects investigating future changes in ARs should explicitly consider ARDT uncertainty as a core part of the experimental design.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/68k4c319Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/0797d5c1Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research AtmospheresArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaUniversity of Michigan: Deep BlueArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Michigan: Deep BlueArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/essoar.10504170.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 54 citations 54 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/68k4c319Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/0797d5c1Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research AtmospheresArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaUniversity of Michigan: Deep BlueArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Michigan: Deep BlueArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/essoar.10504170.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 United StatesPublisher:American Geophysical Union (AGU) Funded by:NSF | Center for Multi-Scale Mo..., NSF | AGS/EAR-PRF: Confronting ..., NSF | Collaborative Research: E...NSF| Center for Multi-Scale Modeling of Atmospheric Processes (MMAP) ,NSF| AGS/EAR-PRF: Confronting Multi-scale Complexity in the Dynamics of Regional U.S. Land-atmosphere Coupling Energetics and Their Links to Climate Variability and Change ,NSF| Collaborative Research: EaSM-3: Understanding the Development of Precipitation Biases in CESM and the Superparameterized CESM on Seasonal to Decadal TimescalesAuthors: Gabriel J. Kooperman; Michael S. Pritchard; Travis A. O'Brien; Ben W. Timmermans;AbstractDeficiencies in the parameterizations of convection used in global climate models often lead to a distorted representation of the simulated rainfall intensity distribution (i.e., too much rainfall from weak rain rates). While encouraging improvements in high percentile rainfall intensity have been found as the horizontal resolution of the Community Atmosphere Model is increased to ∼25 km, we demonstrate no corresponding improvement in the moderate rain rates that generate the majority of accumulated rainfall. Using a statistical framework designed to emphasize links between precipitation intensity and accumulated rainfall beyond just the frequency distribution, we show that CAM cannot realistically simulate moderate rain rates, and cannot capture their intensification with climate change, even as resolution is increased. However, by separating the parameterized convective and large‐scale resolved contributions to total rainfall, we find that the intensity, geographic pattern, and climate change response of CAM's large‐scale rain rates are more consistent with observations (TRMM 3B42), superparameterization, and theoretical expectations, despite issues with parameterized convection. Increasing CAM's horizontal resolution does improve the representation of total rainfall intensity, but not due to changes in the intensity of large‐scale rain rates, which are surprisingly insensitive to horizontal resolution. Rather, improvements occur through an increase in the relative contribution of the large‐scale component to the total amount of accumulated rainfall. Analysis of sensitivities to convective timescale and entrainment rate confirm the importance of these parameters in the possible development of scale‐aware parameterizations, but also reveal unrecognized trade‐offs from the entanglement of precipitation frequency and total amount.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/3r1606kfData sources: Bielefeld Academic Search Engine (BASE)Journal of Advances in Modeling Earth SystemsArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017ms001188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/3r1606kfData sources: Bielefeld Academic Search Engine (BASE)Journal of Advances in Modeling Earth SystemsArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017ms001188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 United StatesPublisher:American Geophysical Union (AGU) Funded by:NSF | Center for Multi-Scale Mo..., NSF | AGS/EAR-PRF: Confronting ..., NSF | Collaborative Research: E...NSF| Center for Multi-Scale Modeling of Atmospheric Processes (MMAP) ,NSF| AGS/EAR-PRF: Confronting Multi-scale Complexity in the Dynamics of Regional U.S. Land-atmosphere Coupling Energetics and Their Links to Climate Variability and Change ,NSF| Collaborative Research: EaSM-3: Understanding the Development of Precipitation Biases in CESM and the Superparameterized CESM on Seasonal to Decadal TimescalesAuthors: Gabriel J. Kooperman; Michael S. Pritchard; Travis A. O'Brien; Ben W. Timmermans;AbstractDeficiencies in the parameterizations of convection used in global climate models often lead to a distorted representation of the simulated rainfall intensity distribution (i.e., too much rainfall from weak rain rates). While encouraging improvements in high percentile rainfall intensity have been found as the horizontal resolution of the Community Atmosphere Model is increased to ∼25 km, we demonstrate no corresponding improvement in the moderate rain rates that generate the majority of accumulated rainfall. Using a statistical framework designed to emphasize links between precipitation intensity and accumulated rainfall beyond just the frequency distribution, we show that CAM cannot realistically simulate moderate rain rates, and cannot capture their intensification with climate change, even as resolution is increased. However, by separating the parameterized convective and large‐scale resolved contributions to total rainfall, we find that the intensity, geographic pattern, and climate change response of CAM's large‐scale rain rates are more consistent with observations (TRMM 3B42), superparameterization, and theoretical expectations, despite issues with parameterized convection. Increasing CAM's horizontal resolution does improve the representation of total rainfall intensity, but not due to changes in the intensity of large‐scale rain rates, which are surprisingly insensitive to horizontal resolution. Rather, improvements occur through an increase in the relative contribution of the large‐scale component to the total amount of accumulated rainfall. Analysis of sensitivities to convective timescale and entrainment rate confirm the importance of these parameters in the possible development of scale‐aware parameterizations, but also reveal unrecognized trade‐offs from the entanglement of precipitation frequency and total amount.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/3r1606kfData sources: Bielefeld Academic Search Engine (BASE)Journal of Advances in Modeling Earth SystemsArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017ms001188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/3r1606kfData sources: Bielefeld Academic Search Engine (BASE)Journal of Advances in Modeling Earth SystemsArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017ms001188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Australia, United StatesPublisher:American Geophysical Union (AGU) Funded by:ARC | ARC Centres of Excellence..., ARC | Discovery Early Career Re...ARC| ARC Centres of Excellences - Grant ID: CE170100023 ,ARC| Discovery Early Career Researcher Award - Grant ID: DE180100638Travis A. O'Brien; Travis A. O'Brien; Andrew D. King; Kimberley J. Reid; Todd P. Lane;doi: 10.1029/2021gl095335
handle: 11343/299216
AbstractDuring March 2021, large regions of Eastern Australia experienced prolonged heavy rainfall and extensive flooding. The maximum daily mean column integrated water vapor transport (IVT) over Sydney during this event was within the top 0.3% of all days since 1980, and the 10‐day mean IVT was in the top 0.2%. In this study, we have examined the change in frequency of extreme IVT events over Sydney in 16 climate models from the Coupled Model Intercomparison Project 6 under two Shared Socioeconomic Pathways (SSP245 and SSP585). Generalized Extreme Value modeling was used to further analyze the change in frequency of extreme IVT events. We found the probability of long duration high IVT events is projected to increase by 80% at the end of the century, but the future change in IVT is correlated to the rate of global and regional warming in each model.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021License: CC BY NCFull-Text: https://escholarship.org/uc/item/67n1d9xjData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaGeophysical Research LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2021gl095335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021License: CC BY NCFull-Text: https://escholarship.org/uc/item/67n1d9xjData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaGeophysical Research LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2021gl095335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Australia, United StatesPublisher:American Geophysical Union (AGU) Funded by:ARC | ARC Centres of Excellence..., ARC | Discovery Early Career Re...ARC| ARC Centres of Excellences - Grant ID: CE170100023 ,ARC| Discovery Early Career Researcher Award - Grant ID: DE180100638Travis A. O'Brien; Travis A. O'Brien; Andrew D. King; Kimberley J. Reid; Todd P. Lane;doi: 10.1029/2021gl095335
handle: 11343/299216
AbstractDuring March 2021, large regions of Eastern Australia experienced prolonged heavy rainfall and extensive flooding. The maximum daily mean column integrated water vapor transport (IVT) over Sydney during this event was within the top 0.3% of all days since 1980, and the 10‐day mean IVT was in the top 0.2%. In this study, we have examined the change in frequency of extreme IVT events over Sydney in 16 climate models from the Coupled Model Intercomparison Project 6 under two Shared Socioeconomic Pathways (SSP245 and SSP585). Generalized Extreme Value modeling was used to further analyze the change in frequency of extreme IVT events. We found the probability of long duration high IVT events is projected to increase by 80% at the end of the century, but the future change in IVT is correlated to the rate of global and regional warming in each model.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021License: CC BY NCFull-Text: https://escholarship.org/uc/item/67n1d9xjData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaGeophysical Research LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2021gl095335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021License: CC BY NCFull-Text: https://escholarship.org/uc/item/67n1d9xjData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaGeophysical Research LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2021gl095335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United StatesPublisher:American Geophysical Union (AGU) Yang Zhou; Paul A. Ullrich; Paul A. Ullrich; Michael Wehner; Huanping Huang; Andrew D. Jones; Travis A. O'Brien; Travis A. O'Brien; Christina M. Patricola; Christina M. Patricola; Alan M. Rhoades; Abhishekh Srivastava;doi: 10.1029/2020gl089096
AbstractAtmospheric rivers (ARs) can be a boon and bane to water resource managers as they have the ability to replenish water reserves, but they can also generate million‐to‐billion‐dollar flood damages. To investigate how anthropogenic climate change may influence AR characteristics in the coastal western United States by end century, we employ a suite of novel tools such as variable resolution in the Community Earth System Model (VR‐CESM), the TempestExtremes AR detection algorithm, and the Ralph, Rutz, et al. (2019, https://doi.org/10.1175/BAMS‐D‐18‐0023.1) AR category scale. We show that end‐century ARs primarily shift from being “mostly or primarily beneficial” to “mostly or primarily hazardous” with a concomitant sharpening and intensification of winter season precipitation totals. Changes in precipitation totals are due to a significant increase in AR (+260%) rather than non‐AR (+7%) precipitation, largely through increases in the most intense category of AR events and a decrease in the interval between landfalling ARs.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/2140k478Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2020gl089096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 52 citations 52 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/2140k478Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2020gl089096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United StatesPublisher:American Geophysical Union (AGU) Yang Zhou; Paul A. Ullrich; Paul A. Ullrich; Michael Wehner; Huanping Huang; Andrew D. Jones; Travis A. O'Brien; Travis A. O'Brien; Christina M. Patricola; Christina M. Patricola; Alan M. Rhoades; Abhishekh Srivastava;doi: 10.1029/2020gl089096
AbstractAtmospheric rivers (ARs) can be a boon and bane to water resource managers as they have the ability to replenish water reserves, but they can also generate million‐to‐billion‐dollar flood damages. To investigate how anthropogenic climate change may influence AR characteristics in the coastal western United States by end century, we employ a suite of novel tools such as variable resolution in the Community Earth System Model (VR‐CESM), the TempestExtremes AR detection algorithm, and the Ralph, Rutz, et al. (2019, https://doi.org/10.1175/BAMS‐D‐18‐0023.1) AR category scale. We show that end‐century ARs primarily shift from being “mostly or primarily beneficial” to “mostly or primarily hazardous” with a concomitant sharpening and intensification of winter season precipitation totals. Changes in precipitation totals are due to a significant increase in AR (+260%) rather than non‐AR (+7%) precipitation, largely through increases in the most intense category of AR events and a decrease in the interval between landfalling ARs.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/2140k478Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2020gl089096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 52 citations 52 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/2140k478Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2020gl089096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United StatesPublisher:American Geophysical Union (AGU) Xue Liu; Ramalingam Saravanan; Dan Fu; Ping Chang; Christina M. Patricola; Travis A. O’Brien;doi: 10.1029/2024gl108160
AbstractAlthough the 2021 Western North America (WNA) heat wave was predicted by weather forecast models, questions remain about whether such strong events can be simulated by global climate models (GCMs) at different model resolutions. Here, we analyze sets of GCM simulations including historical and future periods to check for the occurrence of similar events. High‐ and low‐resolution simulations both encounter challenges in reproducing events as extreme as the observed one, particularly under the present climate. Relatively stronger amplitudes are observed during the future periods. Furthermore, high‐ and low‐resolution short initialized GCM simulations are both able to reasonably predict such strong events and their associated high‐pressure ridge over the WNA with a 1 week forecast lead time. Moisture sensitivity experiments further indicate a drier atmospheric moisture condition results in substantially higher near‐surface temperatures in the simulated heat events.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024License: CC BYFull-Text: https://escholarship.org/uc/item/1k99s5dhData sources: Bielefeld Academic Search Engine (BASE)Geophysical Research LettersArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024gl108160&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024License: CC BYFull-Text: https://escholarship.org/uc/item/1k99s5dhData sources: Bielefeld Academic Search Engine (BASE)Geophysical Research LettersArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024gl108160&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United StatesPublisher:American Geophysical Union (AGU) Xue Liu; Ramalingam Saravanan; Dan Fu; Ping Chang; Christina M. Patricola; Travis A. O’Brien;doi: 10.1029/2024gl108160
AbstractAlthough the 2021 Western North America (WNA) heat wave was predicted by weather forecast models, questions remain about whether such strong events can be simulated by global climate models (GCMs) at different model resolutions. Here, we analyze sets of GCM simulations including historical and future periods to check for the occurrence of similar events. High‐ and low‐resolution simulations both encounter challenges in reproducing events as extreme as the observed one, particularly under the present climate. Relatively stronger amplitudes are observed during the future periods. Furthermore, high‐ and low‐resolution short initialized GCM simulations are both able to reasonably predict such strong events and their associated high‐pressure ridge over the WNA with a 1 week forecast lead time. Moisture sensitivity experiments further indicate a drier atmospheric moisture condition results in substantially higher near‐surface temperatures in the simulated heat events.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024License: CC BYFull-Text: https://escholarship.org/uc/item/1k99s5dhData sources: Bielefeld Academic Search Engine (BASE)Geophysical Research LettersArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024gl108160&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024License: CC BYFull-Text: https://escholarship.org/uc/item/1k99s5dhData sources: Bielefeld Academic Search Engine (BASE)Geophysical Research LettersArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024gl108160&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Abraham Lauer; Jesse Devaney; Chanh Kieu; Ben Kravitz; Travis A. O'Brien; Scott M. Robeson; Paul W. Staten; The Anh Vu;doi: 10.1002/gdj3.188
AbstractClimate change is expected to have far‐reaching effects at both the global and regional scale, but local effects are difficult to determine from coarse‐resolution climate studies. Dynamical downscaling can provide insight into future climate projections on local scales. Here, we present a new dynamically downscaled dataset for Indiana and the surrounding regions. Output from the Community Earth System Model (CESM) version 1 is downscaled using the Weather Research and Forecasting model (WRF). Simulations are run with a 24‐hr reinitialization strategy and a 12‐hr spin‐up window. WRF output is bias corrected to the National Centers for Environmental Protection/National Center for Atmospheric Research 40‐year Reanalysis project (NCEP) using a modified quantile mapping method. Bias‐corrected 2‐m air temperature and accumulated precipitation are the initial focus, with additional variables planned for future releases. Regional climate change signals agree well with larger global studies, and local fine‐scaled features are visible in the resulting dataset, such as urban heat islands, frontal passages, and orographic temperature gradients. This high‐resolution climate dataset could be used for down‐stream applications focused on impacts across the domain, such as urban planning, energy usage, water resources, agriculture and public health.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/gdj3.188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/gdj3.188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Abraham Lauer; Jesse Devaney; Chanh Kieu; Ben Kravitz; Travis A. O'Brien; Scott M. Robeson; Paul W. Staten; The Anh Vu;doi: 10.1002/gdj3.188
AbstractClimate change is expected to have far‐reaching effects at both the global and regional scale, but local effects are difficult to determine from coarse‐resolution climate studies. Dynamical downscaling can provide insight into future climate projections on local scales. Here, we present a new dynamically downscaled dataset for Indiana and the surrounding regions. Output from the Community Earth System Model (CESM) version 1 is downscaled using the Weather Research and Forecasting model (WRF). Simulations are run with a 24‐hr reinitialization strategy and a 12‐hr spin‐up window. WRF output is bias corrected to the National Centers for Environmental Protection/National Center for Atmospheric Research 40‐year Reanalysis project (NCEP) using a modified quantile mapping method. Bias‐corrected 2‐m air temperature and accumulated precipitation are the initial focus, with additional variables planned for future releases. Regional climate change signals agree well with larger global studies, and local fine‐scaled features are visible in the resulting dataset, such as urban heat islands, frontal passages, and orographic temperature gradients. This high‐resolution climate dataset could be used for down‐stream applications focused on impacts across the domain, such as urban planning, energy usage, water resources, agriculture and public health.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/gdj3.188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/gdj3.188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 United StatesPublisher:Wiley Funded by:FCT | ATLACE, NSF | NRT: A training incubator...FCT| ATLACE ,NSF| NRT: A training incubator for addressing urban environmental change from Ridge to Reef (R2R)Travis Allen O'Brien; Michael F Wehner; Ashley E. Payne; Christine A Shields; Jonathan J. Rutz; L. Ruby Leung; F. Martin Ralph; Allison B. Marquardt Collow; Irina Gorodetskaya; Bin Guan; Juan Manuel Lora; Elizabeth McClenny; Kyle M. Nardi; Alexandre M. Ramos; Ricardo Tomé; Chandan Sarangi; Eric Jay Shearer; Paul Ullrich; Colin M. Zarzycki; Burlen Loring; Huanping Huang; Héctor Alejandro Inda Díaz; Alan M. Rhoades; Yang Zhou;doi: 10.1002/essoar.10504170.1 , 10.1002/essoar.10504170.4 , 10.1029/2021jd036013 , 10.1002/essoar.10504170.3 , 10.1002/essoar.10504170.2
pmid: 35859545
pmc: PMC9285484
handle: 2027.42/171990
doi: 10.1002/essoar.10504170.1 , 10.1002/essoar.10504170.4 , 10.1029/2021jd036013 , 10.1002/essoar.10504170.3 , 10.1002/essoar.10504170.2
pmid: 35859545
pmc: PMC9285484
handle: 2027.42/171990
AbstractThe Atmospheric River (AR) Tracking Method Intercomparison Project (ARTMIP) is a community effort to systematically assess how the uncertainties from AR detectors (ARDTs) impact our scientific understanding of ARs. This study describes the ARTMIP Tier 2 experimental design and initial results using the Coupled Model Intercomparison Project (CMIP) Phases 5 and 6 multi‐model ensembles. We show that AR statistics from a given ARDT in CMIP5/6 historical simulations compare remarkably well with the MERRA‐2 reanalysis. In CMIP5/6 future simulations, most ARDTs project a global increase in AR frequency, counts, and sizes, especially along the western coastlines of the Pacific and Atlantic oceans. We find that the choice of ARDT is the dominant contributor to the uncertainty in projected AR frequency when compared with model choice. These results imply that new projects investigating future changes in ARs should explicitly consider ARDT uncertainty as a core part of the experimental design.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/68k4c319Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/0797d5c1Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research AtmospheresArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaUniversity of Michigan: Deep BlueArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Michigan: Deep BlueArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/essoar.10504170.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 54 citations 54 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/68k4c319Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/0797d5c1Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research AtmospheresArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaUniversity of Michigan: Deep BlueArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Michigan: Deep BlueArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/essoar.10504170.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 United StatesPublisher:Wiley Funded by:FCT | ATLACE, NSF | NRT: A training incubator...FCT| ATLACE ,NSF| NRT: A training incubator for addressing urban environmental change from Ridge to Reef (R2R)Travis Allen O'Brien; Michael F Wehner; Ashley E. Payne; Christine A Shields; Jonathan J. Rutz; L. Ruby Leung; F. Martin Ralph; Allison B. Marquardt Collow; Irina Gorodetskaya; Bin Guan; Juan Manuel Lora; Elizabeth McClenny; Kyle M. Nardi; Alexandre M. Ramos; Ricardo Tomé; Chandan Sarangi; Eric Jay Shearer; Paul Ullrich; Colin M. Zarzycki; Burlen Loring; Huanping Huang; Héctor Alejandro Inda Díaz; Alan M. Rhoades; Yang Zhou;doi: 10.1002/essoar.10504170.1 , 10.1002/essoar.10504170.4 , 10.1029/2021jd036013 , 10.1002/essoar.10504170.3 , 10.1002/essoar.10504170.2
pmid: 35859545
pmc: PMC9285484
handle: 2027.42/171990
doi: 10.1002/essoar.10504170.1 , 10.1002/essoar.10504170.4 , 10.1029/2021jd036013 , 10.1002/essoar.10504170.3 , 10.1002/essoar.10504170.2
pmid: 35859545
pmc: PMC9285484
handle: 2027.42/171990
AbstractThe Atmospheric River (AR) Tracking Method Intercomparison Project (ARTMIP) is a community effort to systematically assess how the uncertainties from AR detectors (ARDTs) impact our scientific understanding of ARs. This study describes the ARTMIP Tier 2 experimental design and initial results using the Coupled Model Intercomparison Project (CMIP) Phases 5 and 6 multi‐model ensembles. We show that AR statistics from a given ARDT in CMIP5/6 historical simulations compare remarkably well with the MERRA‐2 reanalysis. In CMIP5/6 future simulations, most ARDTs project a global increase in AR frequency, counts, and sizes, especially along the western coastlines of the Pacific and Atlantic oceans. We find that the choice of ARDT is the dominant contributor to the uncertainty in projected AR frequency when compared with model choice. These results imply that new projects investigating future changes in ARs should explicitly consider ARDT uncertainty as a core part of the experimental design.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/68k4c319Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/0797d5c1Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research AtmospheresArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaUniversity of Michigan: Deep BlueArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Michigan: Deep BlueArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/essoar.10504170.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 54 citations 54 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/68k4c319Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/0797d5c1Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research AtmospheresArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaUniversity of Michigan: Deep BlueArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Michigan: Deep BlueArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/essoar.10504170.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 United StatesPublisher:American Geophysical Union (AGU) Funded by:NSF | Center for Multi-Scale Mo..., NSF | AGS/EAR-PRF: Confronting ..., NSF | Collaborative Research: E...NSF| Center for Multi-Scale Modeling of Atmospheric Processes (MMAP) ,NSF| AGS/EAR-PRF: Confronting Multi-scale Complexity in the Dynamics of Regional U.S. Land-atmosphere Coupling Energetics and Their Links to Climate Variability and Change ,NSF| Collaborative Research: EaSM-3: Understanding the Development of Precipitation Biases in CESM and the Superparameterized CESM on Seasonal to Decadal TimescalesAuthors: Gabriel J. Kooperman; Michael S. Pritchard; Travis A. O'Brien; Ben W. Timmermans;AbstractDeficiencies in the parameterizations of convection used in global climate models often lead to a distorted representation of the simulated rainfall intensity distribution (i.e., too much rainfall from weak rain rates). While encouraging improvements in high percentile rainfall intensity have been found as the horizontal resolution of the Community Atmosphere Model is increased to ∼25 km, we demonstrate no corresponding improvement in the moderate rain rates that generate the majority of accumulated rainfall. Using a statistical framework designed to emphasize links between precipitation intensity and accumulated rainfall beyond just the frequency distribution, we show that CAM cannot realistically simulate moderate rain rates, and cannot capture their intensification with climate change, even as resolution is increased. However, by separating the parameterized convective and large‐scale resolved contributions to total rainfall, we find that the intensity, geographic pattern, and climate change response of CAM's large‐scale rain rates are more consistent with observations (TRMM 3B42), superparameterization, and theoretical expectations, despite issues with parameterized convection. Increasing CAM's horizontal resolution does improve the representation of total rainfall intensity, but not due to changes in the intensity of large‐scale rain rates, which are surprisingly insensitive to horizontal resolution. Rather, improvements occur through an increase in the relative contribution of the large‐scale component to the total amount of accumulated rainfall. Analysis of sensitivities to convective timescale and entrainment rate confirm the importance of these parameters in the possible development of scale‐aware parameterizations, but also reveal unrecognized trade‐offs from the entanglement of precipitation frequency and total amount.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/3r1606kfData sources: Bielefeld Academic Search Engine (BASE)Journal of Advances in Modeling Earth SystemsArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017ms001188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/3r1606kfData sources: Bielefeld Academic Search Engine (BASE)Journal of Advances in Modeling Earth SystemsArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017ms001188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 United StatesPublisher:American Geophysical Union (AGU) Funded by:NSF | Center for Multi-Scale Mo..., NSF | AGS/EAR-PRF: Confronting ..., NSF | Collaborative Research: E...NSF| Center for Multi-Scale Modeling of Atmospheric Processes (MMAP) ,NSF| AGS/EAR-PRF: Confronting Multi-scale Complexity in the Dynamics of Regional U.S. Land-atmosphere Coupling Energetics and Their Links to Climate Variability and Change ,NSF| Collaborative Research: EaSM-3: Understanding the Development of Precipitation Biases in CESM and the Superparameterized CESM on Seasonal to Decadal TimescalesAuthors: Gabriel J. Kooperman; Michael S. Pritchard; Travis A. O'Brien; Ben W. Timmermans;AbstractDeficiencies in the parameterizations of convection used in global climate models often lead to a distorted representation of the simulated rainfall intensity distribution (i.e., too much rainfall from weak rain rates). While encouraging improvements in high percentile rainfall intensity have been found as the horizontal resolution of the Community Atmosphere Model is increased to ∼25 km, we demonstrate no corresponding improvement in the moderate rain rates that generate the majority of accumulated rainfall. Using a statistical framework designed to emphasize links between precipitation intensity and accumulated rainfall beyond just the frequency distribution, we show that CAM cannot realistically simulate moderate rain rates, and cannot capture their intensification with climate change, even as resolution is increased. However, by separating the parameterized convective and large‐scale resolved contributions to total rainfall, we find that the intensity, geographic pattern, and climate change response of CAM's large‐scale rain rates are more consistent with observations (TRMM 3B42), superparameterization, and theoretical expectations, despite issues with parameterized convection. Increasing CAM's horizontal resolution does improve the representation of total rainfall intensity, but not due to changes in the intensity of large‐scale rain rates, which are surprisingly insensitive to horizontal resolution. Rather, improvements occur through an increase in the relative contribution of the large‐scale component to the total amount of accumulated rainfall. Analysis of sensitivities to convective timescale and entrainment rate confirm the importance of these parameters in the possible development of scale‐aware parameterizations, but also reveal unrecognized trade‐offs from the entanglement of precipitation frequency and total amount.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/3r1606kfData sources: Bielefeld Academic Search Engine (BASE)Journal of Advances in Modeling Earth SystemsArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017ms001188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/3r1606kfData sources: Bielefeld Academic Search Engine (BASE)Journal of Advances in Modeling Earth SystemsArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017ms001188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Australia, United StatesPublisher:American Geophysical Union (AGU) Funded by:ARC | ARC Centres of Excellence..., ARC | Discovery Early Career Re...ARC| ARC Centres of Excellences - Grant ID: CE170100023 ,ARC| Discovery Early Career Researcher Award - Grant ID: DE180100638Travis A. O'Brien; Travis A. O'Brien; Andrew D. King; Kimberley J. Reid; Todd P. Lane;doi: 10.1029/2021gl095335
handle: 11343/299216
AbstractDuring March 2021, large regions of Eastern Australia experienced prolonged heavy rainfall and extensive flooding. The maximum daily mean column integrated water vapor transport (IVT) over Sydney during this event was within the top 0.3% of all days since 1980, and the 10‐day mean IVT was in the top 0.2%. In this study, we have examined the change in frequency of extreme IVT events over Sydney in 16 climate models from the Coupled Model Intercomparison Project 6 under two Shared Socioeconomic Pathways (SSP245 and SSP585). Generalized Extreme Value modeling was used to further analyze the change in frequency of extreme IVT events. We found the probability of long duration high IVT events is projected to increase by 80% at the end of the century, but the future change in IVT is correlated to the rate of global and regional warming in each model.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021License: CC BY NCFull-Text: https://escholarship.org/uc/item/67n1d9xjData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaGeophysical Research LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2021gl095335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021License: CC BY NCFull-Text: https://escholarship.org/uc/item/67n1d9xjData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaGeophysical Research LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2021gl095335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Australia, United StatesPublisher:American Geophysical Union (AGU) Funded by:ARC | ARC Centres of Excellence..., ARC | Discovery Early Career Re...ARC| ARC Centres of Excellences - Grant ID: CE170100023 ,ARC| Discovery Early Career Researcher Award - Grant ID: DE180100638Travis A. O'Brien; Travis A. O'Brien; Andrew D. King; Kimberley J. Reid; Todd P. Lane;doi: 10.1029/2021gl095335
handle: 11343/299216
AbstractDuring March 2021, large regions of Eastern Australia experienced prolonged heavy rainfall and extensive flooding. The maximum daily mean column integrated water vapor transport (IVT) over Sydney during this event was within the top 0.3% of all days since 1980, and the 10‐day mean IVT was in the top 0.2%. In this study, we have examined the change in frequency of extreme IVT events over Sydney in 16 climate models from the Coupled Model Intercomparison Project 6 under two Shared Socioeconomic Pathways (SSP245 and SSP585). Generalized Extreme Value modeling was used to further analyze the change in frequency of extreme IVT events. We found the probability of long duration high IVT events is projected to increase by 80% at the end of the century, but the future change in IVT is correlated to the rate of global and regional warming in each model.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021License: CC BY NCFull-Text: https://escholarship.org/uc/item/67n1d9xjData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaGeophysical Research LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2021gl095335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021License: CC BY NCFull-Text: https://escholarship.org/uc/item/67n1d9xjData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaGeophysical Research LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2021gl095335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United StatesPublisher:American Geophysical Union (AGU) Yang Zhou; Paul A. Ullrich; Paul A. Ullrich; Michael Wehner; Huanping Huang; Andrew D. Jones; Travis A. O'Brien; Travis A. O'Brien; Christina M. Patricola; Christina M. Patricola; Alan M. Rhoades; Abhishekh Srivastava;doi: 10.1029/2020gl089096
AbstractAtmospheric rivers (ARs) can be a boon and bane to water resource managers as they have the ability to replenish water reserves, but they can also generate million‐to‐billion‐dollar flood damages. To investigate how anthropogenic climate change may influence AR characteristics in the coastal western United States by end century, we employ a suite of novel tools such as variable resolution in the Community Earth System Model (VR‐CESM), the TempestExtremes AR detection algorithm, and the Ralph, Rutz, et al. (2019, https://doi.org/10.1175/BAMS‐D‐18‐0023.1) AR category scale. We show that end‐century ARs primarily shift from being “mostly or primarily beneficial” to “mostly or primarily hazardous” with a concomitant sharpening and intensification of winter season precipitation totals. Changes in precipitation totals are due to a significant increase in AR (+260%) rather than non‐AR (+7%) precipitation, largely through increases in the most intense category of AR events and a decrease in the interval between landfalling ARs.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/2140k478Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2020gl089096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 52 citations 52 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/2140k478Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2020gl089096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United StatesPublisher:American Geophysical Union (AGU) Yang Zhou; Paul A. Ullrich; Paul A. Ullrich; Michael Wehner; Huanping Huang; Andrew D. Jones; Travis A. O'Brien; Travis A. O'Brien; Christina M. Patricola; Christina M. Patricola; Alan M. Rhoades; Abhishekh Srivastava;doi: 10.1029/2020gl089096
AbstractAtmospheric rivers (ARs) can be a boon and bane to water resource managers as they have the ability to replenish water reserves, but they can also generate million‐to‐billion‐dollar flood damages. To investigate how anthropogenic climate change may influence AR characteristics in the coastal western United States by end century, we employ a suite of novel tools such as variable resolution in the Community Earth System Model (VR‐CESM), the TempestExtremes AR detection algorithm, and the Ralph, Rutz, et al. (2019, https://doi.org/10.1175/BAMS‐D‐18‐0023.1) AR category scale. We show that end‐century ARs primarily shift from being “mostly or primarily beneficial” to “mostly or primarily hazardous” with a concomitant sharpening and intensification of winter season precipitation totals. Changes in precipitation totals are due to a significant increase in AR (+260%) rather than non‐AR (+7%) precipitation, largely through increases in the most intense category of AR events and a decrease in the interval between landfalling ARs.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/2140k478Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2020gl089096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 52 citations 52 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/2140k478Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2020gl089096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United StatesPublisher:American Geophysical Union (AGU) Xue Liu; Ramalingam Saravanan; Dan Fu; Ping Chang; Christina M. Patricola; Travis A. O’Brien;doi: 10.1029/2024gl108160
AbstractAlthough the 2021 Western North America (WNA) heat wave was predicted by weather forecast models, questions remain about whether such strong events can be simulated by global climate models (GCMs) at different model resolutions. Here, we analyze sets of GCM simulations including historical and future periods to check for the occurrence of similar events. High‐ and low‐resolution simulations both encounter challenges in reproducing events as extreme as the observed one, particularly under the present climate. Relatively stronger amplitudes are observed during the future periods. Furthermore, high‐ and low‐resolution short initialized GCM simulations are both able to reasonably predict such strong events and their associated high‐pressure ridge over the WNA with a 1 week forecast lead time. Moisture sensitivity experiments further indicate a drier atmospheric moisture condition results in substantially higher near‐surface temperatures in the simulated heat events.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024License: CC BYFull-Text: https://escholarship.org/uc/item/1k99s5dhData sources: Bielefeld Academic Search Engine (BASE)Geophysical Research LettersArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024gl108160&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024License: CC BYFull-Text: https://escholarship.org/uc/item/1k99s5dhData sources: Bielefeld Academic Search Engine (BASE)Geophysical Research LettersArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024gl108160&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United StatesPublisher:American Geophysical Union (AGU) Xue Liu; Ramalingam Saravanan; Dan Fu; Ping Chang; Christina M. Patricola; Travis A. O’Brien;doi: 10.1029/2024gl108160
AbstractAlthough the 2021 Western North America (WNA) heat wave was predicted by weather forecast models, questions remain about whether such strong events can be simulated by global climate models (GCMs) at different model resolutions. Here, we analyze sets of GCM simulations including historical and future periods to check for the occurrence of similar events. High‐ and low‐resolution simulations both encounter challenges in reproducing events as extreme as the observed one, particularly under the present climate. Relatively stronger amplitudes are observed during the future periods. Furthermore, high‐ and low‐resolution short initialized GCM simulations are both able to reasonably predict such strong events and their associated high‐pressure ridge over the WNA with a 1 week forecast lead time. Moisture sensitivity experiments further indicate a drier atmospheric moisture condition results in substantially higher near‐surface temperatures in the simulated heat events.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024License: CC BYFull-Text: https://escholarship.org/uc/item/1k99s5dhData sources: Bielefeld Academic Search Engine (BASE)Geophysical Research LettersArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024gl108160&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024License: CC BYFull-Text: https://escholarship.org/uc/item/1k99s5dhData sources: Bielefeld Academic Search Engine (BASE)Geophysical Research LettersArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024gl108160&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu