- home
- Advanced Search
- Energy Research
- 2016-2025
- Energy Research
- 2016-2025
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Marcin Dębowski; Marta Kisielewska; Joanna Kazimierowicz; Marcin Zieliński;doi: 10.3390/en16010571
Production and consumption of confectionery products have increased worldwide, thus, effective management of wastewater produced is now an important issue. The confectionery high-load sewage was explored for biogas production in an innovative-design anaerobic reactor with labyrinth flow. The experimental studies were focused on determining the best technological parameters of anaerobic digestion for the effective removal of pollutants and obtaining high CH4 production efficiency. It was found that organic loading rate (OLR) of 5.0–6.0 g COD/L·d contributed to the highest CH4 generation of 94.7 ± 6.1 to 97.1 ± 5.1 L CH4/d, which corresponded to a high COD removal of 75.4 ± 1.5 to 75.0 ± 0.6%. Under such conditions the FOS/TAC ratio was below 0.4, indicating reactor stability, and pH was on the level of 7.15 ± 0.04 at OLR 5.0 g COD/L·d and 7.04 ± 0.07 at OLR 6.0 g COD/L·d.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/1/571/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/1/571/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Natalia Kujawska; Szymon Talbierz; Marcin Dębowski; Joanna Kazimierowicz; Marcin Zieliński;doi: 10.3390/en14102952
Inexpensive carbon sources offering an alternative to glucose are searched for to reduce costs of docosahexaenoic acid production by microalgae. The use of waste glycerol seems substantiated and prospective in this case. The objective of this study was to determine the production yield of heterotrophic microalgae Schizochytrium sp. biomass and the efficiency of docosahexaenoic acid production in various types of cultures with waste glycerol. Cultivation conditions were optimized using the Plackett–Burman method and Response Surface Methodology. The highest technological performance was obtained in the fed-batch culture, where the concentration of Schizochytrium sp. biomass reached 103.44 ± 1.50 g/dm3, the lipid concentration in Schizochytrium sp. biomass was at 48.85 ± 0.81 g/dm3, and the docosahexaenoic acid concentration at 21.98 ± 0.36 g/dm3. The highest docosahexaenoic acid content, accounting for 61.76 ± 3.77% of total fatty acids, was determined in lipid bodies of the Schizochytrium sp. biomass produced in the batch culture, whereas the lowest one, accounting for 44.99 ± 2.12% of total fatty acids, in those of the biomass grown in the fed-batch culture.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/10/2952/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14102952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/10/2952/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14102952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wydawnictwo Naukowe Gabriel Borowski (WNGB) Paulina Rusanowska; Marcin Zieliński; Marcin Dębowski; Mirosław Krzemieniewski; Agnieszka Cydzik-Kwiatkowska; Agata Głowacka-Gil; Magdalena Zielińska;Ultrasonic disintegration is one of the most interesting technologies among all known and described technologies for sewage sludge pre-treatment before the process of methane fermentation. This study was aimed at determining the effects of an innovative ultrasonic string disintegrator used for sewage sludge pre-treatment on the effectiveness of methane fermentation process. In this experiment, we used a device for disintegration of organic substrates, including sewage sludge, with the use ultrasonic waves. Its technical solution is protected by a patent no. P. 391477 – Device for destruction of tissue and cell structures of organic substrate. The volume of biogas produced ranged from 0.194±0.089 dm3/g o.d.m. at loading of 5.0 g o.d.m./dm3 and power of 50 W to 0.315±0.087 dm3/g o.d.m. at loading of 4.0 g o.d.m./dm3 and ultrasounds power of 125 W. The study demonstrated a positive effect of sewage sludge sonication on the percentage content of methane in biogas. Sewage sludge exposure to 125 W ultrasounds increased methane content in biogas to 68.3±2.5 % at tank loading of 3.0 g o.d.m./dm3.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12911/22998993/89817&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12911/22998993/89817&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Marcin Zieliński; Paulina Rusanowska; Anna Nowicka; Magdalena Zielinska; Magda Dudek; Marcin Dębowski; Cezary Purwin; Maja Fijałkowska;Abstract Methane fermentation is a versatile and established technology that should be optimized at all stages, starting from biomass storage and ending at digestate management. A commonly used method of biomass storage is ensiling, and the methane production of the biomass is determined by the products of the ensiling fermentation. Therefore, this study determined the effect of fermentation stimulants, fermentation inhibitors and osmotic condition improvers on the methane production of Sida hermaphrodita silages. Methane production was highest (334.6 ± 8.1 L/kg VSadded) with silage prepared with molasses, which increased its content of carbohydrates and lowered its ammonium nitrogen content. Production of methane was also high with untreated plant (304.0 ± 10.1 L/kg VSadded). Methane production correlated with Methanosarcinaceae abundance in the sludge. Principal component analysis revealed that first principal component was strongly correlated with indicators related with ensiling performance. Ensiling had no effect on the hemicellulose content and lowered the pH of silage independent of the additive used.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.09.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.09.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Marta Kisielewska; Marcin Zieliński; Marcin Dębowski; Joanna Kazimierowicz; Zdzisława Romanowska-Duda; Magda Dudek;doi: 10.3390/en13061432
One of the most important factors in determining the profitable production of microalgae biomass is the use of a cost effective growth medium that is rich in nutrients. The objective of the study was to determine the possibility of using digestates from anaerobic digestion of different feedstock mixtures as the media for Scenedesmus sp. cultivation. A different liquid digestate composition was obtained in terms of organic compounds, phosphorus, and nitrogen concentrations, depending on the substrates used in the anaerobic digestion. It was found that the highest biomass production was obtained when using digestate from anaerobic digestion of the feedstock mainly composed of microalgae biomass, which was characterized by low organic compounds concentration. In this case, the average biomass concentration reached 2382 mg total solids/L. A lower Scenedesmus sp. biomass yield was obtained using digestate from anaerobic digester processing feedstock based on maize silage and cattle menure. In the variants of the study, it was also found that the increase in the initial concentration of ammonia nitrogen in the growth medium up to 160 mg/L significantly reduced the growth of Scenedesmus sp. The results indicated the possibility of a high ammonia nitrogen and orthophosphates removal from anaerobic digestates by Scenedesmus sp. microalgae. Phosphorus concentration in the cultivation medium is a limiting factor for the growth of Scenedesmus sp., thus phosphorus supplementation should be considered when using liquid digestate as the culture medium. The optimization model indicated that the volume of liquid digestate that was used for preparing the cultivation medium, the initial concentration of organic compounds, and the initial concentration of ammonia nitrogen had a significant impact on the production of Scenedesmus sp. biomass.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/6/1432/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061432&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/6/1432/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061432&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Marcin Zieliński; Łukasz Barczak; Paulina Rusanowska; Joanna Kazimierowicz; Marcin Dębowski;doi: 10.3390/en17215287
The development and implementation of innovative production technologies have a direct influence on the creation of new sources of pollution and types of waste. An example of this is the wastewater from soil-less agriculture and the effluent from microbial fuel cells. An important topic is the development and application of methods for their neutralisation that take into account the assumptions of global environmental policy. The aim of the present study was to determine the possibilities of utilising this type of pollution in the process of autotrophic cultivation of the biohydrogen-producing microalgae Tetraselmis subcordiformis. The highest biomass concentration of 3030 ± 183 mgVS/L and 67.9 ± 3.5 mg chl-a/L was observed when the culture medium was wastewater from soil-less agriculture. The growth rate in the logarithmic growth phase was 270 ± 16 mgVS/L-day and 5.95 ± 0.24 mg chl-a/L-day. In the same scenario, the highest total H2 production of 161 ± 8 mL was also achieved, with an observed H2 production rate of 4.67 ± 0.23 mL/h. Significantly lower effects in terms of biomass production of T. subcordiformis and H2 yield were observed when fermented dairy wastewater from the anode chamber of the microbial fuel cell was added to the culture medium.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17215287&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17215287&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Informa UK Limited Authors: Anna Hajduk; Marcin Zieliński; Marcin Dębowski; Marta Kisielewska;pmid: 26672642
The aim of the study was to determine the impact of the constant magnetic field (CMF) application on the effectiveness of anaerobic digestion of algal biomass. The highest yield of biogas in the range of 448.9 L/kg volatile solids (VS) to 456.6 L/kg VS was observed in the variants, in which the retention time in the CMF-exposed area ranged from 144 to 216 min/d. Under these conditions, the concentration of methane in the biogas was nearly 65.0%. The increase in the contact time of the fermentation medium with the CMF-exposed area had a significant impact of reducing the effectiveness of anaerobic digestion. The lowest biodegradation was observed when the retention time was 432 min/d. Under such condition, 281.1 L of biogas/kg VS with methane content of 41.8% was obtained. A correlation between the time of exposure to CMF and the values of parameters characterizing the methane production was found.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09593330.2015.1126362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09593330.2015.1126362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Anna Nowicka; Marcin Zieliński; Marcin Dębowski; Magda Dudek;doi: 10.3390/en14238018
One of the most effective technologies involving the use of lignocellulosic biomass is the production of biofuels, including methane-rich biogas. In order to increase the amount of gas produced, it is necessary to optimize the fermentation process, for example, by substrate pretreatment. The present study aimed to analyze the coupled effects of microwave radiation and the following acids: phosphoric(V) acid (H3PO4), hydrochloric acid (HCl), and sulfuric(VI) acid (H2SO4), on the destruction of a lignocellulosic complex of maize silage biomass and its susceptibility to anaerobic degradation in the methane fermentation process. The study compared the effects of plant biomass (maize silage) disintegration using microwave and conventional heating; the criterion differentiating experimental variants was the dose of acid used, i.e., 10% H3PO4, 10% HCl, and 10% H2SO4 in doses of 0.02, 0.05, 0.10, 0.20, and 0.40 g/gTS. Microwave heating caused a higher biogas production in the case of all acids tested (HCl, H2SO4, H3PO4). The highest biogas volume, exceeding 1800 L/kgVS, was produced in the variant with HCl used at a dose of 0.4 g/gTS.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/23/8018/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14238018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/23/8018/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14238018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Joanna Kazimierowicz; Marcin Dębowski; Marcin Zieliński; Sławomir Kasiński; Jordi Cruz Sanchez;doi: 10.3390/en17020338
The supply of waste glycerol is rising steadily, partially due to the increased global production of biodiesel. Global biodiesel production totals about 47.1 billion liters and is a process that involves the co-production of waste glycerol, which accounts for over 12% of total esters produced. Waste glycerol is also generated during bioethanol production and is estimated to account for 10% of the total sugar consumed on average. Therefore, there is a real need to seek new technologies for reusing and neutralizing glycerol waste, as well as refining the existing ones. Biotechnological means of valorizing waste glycerol include converting it into gas biofuels via anaerobic fermentation processes. Glycerol-to-bioenergy conversion can be improved through the implementation of new technologies, the use of carefully selected or genetically modified microbial strains, the improvement of their metabolic efficiency, and the synthesis of new enzymes. The present study aimed to describe the mechanisms of microbial and anaerobic glycerol-to-biogas valorization processes (including methane, hydrogen, and biohythane) and assess their efficiency, as well as examine the progress of research and implementation work on the subject and present future avenues of research.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17020338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17020338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Justyna Tarapata; Marcin Zieliński; Justyna Zulewska;doi: 10.3390/en15186829
This study aimed at evaluating the methane potential of two ultrafiltration (UFP) and two diafiltration (DFP) permeates generated during milk protein concentration. The permeates were characterized by a different chemical oxygen demand (COD) ranging from 7610 mg O2/L to 57,020 mg O2/L. The CH4 production efficiency was recorded for 20 days and ranged from 149 to 181 NL/kg CODadded. Moreover, the possibilities of the use of UFP/DFP to produce electricity and heat with a combined heat and power (CHP) unit was analyzed to underline the impact of the implementation of anaerobic digestion on the electric and thermal energy requirements of a dairy plant. It was concluded that the application of anaerobic digestion to UFP and DFP treatments generates the energy required to cover all the large-scale dairy plant energy demands and produce extra income. The amount of permeates generated annually in the analyzed dairy plant will enable the production of approx. 22,699 MWh of electricity and 85,516 GJ of heat. This would require a biogas plant with a 3 MW yield. Additionally, the lactose production from UFP/DFP was considered as an alternative or parallel solution for its management. The study confirmed that the biogas and lactose production from UFP/DFP enables plant owners to adjust a plant’s management towards one of these two solutions.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/18/6829/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/18/6829/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Marcin Dębowski; Marta Kisielewska; Joanna Kazimierowicz; Marcin Zieliński;doi: 10.3390/en16010571
Production and consumption of confectionery products have increased worldwide, thus, effective management of wastewater produced is now an important issue. The confectionery high-load sewage was explored for biogas production in an innovative-design anaerobic reactor with labyrinth flow. The experimental studies were focused on determining the best technological parameters of anaerobic digestion for the effective removal of pollutants and obtaining high CH4 production efficiency. It was found that organic loading rate (OLR) of 5.0–6.0 g COD/L·d contributed to the highest CH4 generation of 94.7 ± 6.1 to 97.1 ± 5.1 L CH4/d, which corresponded to a high COD removal of 75.4 ± 1.5 to 75.0 ± 0.6%. Under such conditions the FOS/TAC ratio was below 0.4, indicating reactor stability, and pH was on the level of 7.15 ± 0.04 at OLR 5.0 g COD/L·d and 7.04 ± 0.07 at OLR 6.0 g COD/L·d.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/1/571/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/1/571/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Natalia Kujawska; Szymon Talbierz; Marcin Dębowski; Joanna Kazimierowicz; Marcin Zieliński;doi: 10.3390/en14102952
Inexpensive carbon sources offering an alternative to glucose are searched for to reduce costs of docosahexaenoic acid production by microalgae. The use of waste glycerol seems substantiated and prospective in this case. The objective of this study was to determine the production yield of heterotrophic microalgae Schizochytrium sp. biomass and the efficiency of docosahexaenoic acid production in various types of cultures with waste glycerol. Cultivation conditions were optimized using the Plackett–Burman method and Response Surface Methodology. The highest technological performance was obtained in the fed-batch culture, where the concentration of Schizochytrium sp. biomass reached 103.44 ± 1.50 g/dm3, the lipid concentration in Schizochytrium sp. biomass was at 48.85 ± 0.81 g/dm3, and the docosahexaenoic acid concentration at 21.98 ± 0.36 g/dm3. The highest docosahexaenoic acid content, accounting for 61.76 ± 3.77% of total fatty acids, was determined in lipid bodies of the Schizochytrium sp. biomass produced in the batch culture, whereas the lowest one, accounting for 44.99 ± 2.12% of total fatty acids, in those of the biomass grown in the fed-batch culture.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/10/2952/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14102952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/10/2952/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14102952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wydawnictwo Naukowe Gabriel Borowski (WNGB) Paulina Rusanowska; Marcin Zieliński; Marcin Dębowski; Mirosław Krzemieniewski; Agnieszka Cydzik-Kwiatkowska; Agata Głowacka-Gil; Magdalena Zielińska;Ultrasonic disintegration is one of the most interesting technologies among all known and described technologies for sewage sludge pre-treatment before the process of methane fermentation. This study was aimed at determining the effects of an innovative ultrasonic string disintegrator used for sewage sludge pre-treatment on the effectiveness of methane fermentation process. In this experiment, we used a device for disintegration of organic substrates, including sewage sludge, with the use ultrasonic waves. Its technical solution is protected by a patent no. P. 391477 – Device for destruction of tissue and cell structures of organic substrate. The volume of biogas produced ranged from 0.194±0.089 dm3/g o.d.m. at loading of 5.0 g o.d.m./dm3 and power of 50 W to 0.315±0.087 dm3/g o.d.m. at loading of 4.0 g o.d.m./dm3 and ultrasounds power of 125 W. The study demonstrated a positive effect of sewage sludge sonication on the percentage content of methane in biogas. Sewage sludge exposure to 125 W ultrasounds increased methane content in biogas to 68.3±2.5 % at tank loading of 3.0 g o.d.m./dm3.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12911/22998993/89817&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12911/22998993/89817&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Marcin Zieliński; Paulina Rusanowska; Anna Nowicka; Magdalena Zielinska; Magda Dudek; Marcin Dębowski; Cezary Purwin; Maja Fijałkowska;Abstract Methane fermentation is a versatile and established technology that should be optimized at all stages, starting from biomass storage and ending at digestate management. A commonly used method of biomass storage is ensiling, and the methane production of the biomass is determined by the products of the ensiling fermentation. Therefore, this study determined the effect of fermentation stimulants, fermentation inhibitors and osmotic condition improvers on the methane production of Sida hermaphrodita silages. Methane production was highest (334.6 ± 8.1 L/kg VSadded) with silage prepared with molasses, which increased its content of carbohydrates and lowered its ammonium nitrogen content. Production of methane was also high with untreated plant (304.0 ± 10.1 L/kg VSadded). Methane production correlated with Methanosarcinaceae abundance in the sludge. Principal component analysis revealed that first principal component was strongly correlated with indicators related with ensiling performance. Ensiling had no effect on the hemicellulose content and lowered the pH of silage independent of the additive used.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.09.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.09.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Marta Kisielewska; Marcin Zieliński; Marcin Dębowski; Joanna Kazimierowicz; Zdzisława Romanowska-Duda; Magda Dudek;doi: 10.3390/en13061432
One of the most important factors in determining the profitable production of microalgae biomass is the use of a cost effective growth medium that is rich in nutrients. The objective of the study was to determine the possibility of using digestates from anaerobic digestion of different feedstock mixtures as the media for Scenedesmus sp. cultivation. A different liquid digestate composition was obtained in terms of organic compounds, phosphorus, and nitrogen concentrations, depending on the substrates used in the anaerobic digestion. It was found that the highest biomass production was obtained when using digestate from anaerobic digestion of the feedstock mainly composed of microalgae biomass, which was characterized by low organic compounds concentration. In this case, the average biomass concentration reached 2382 mg total solids/L. A lower Scenedesmus sp. biomass yield was obtained using digestate from anaerobic digester processing feedstock based on maize silage and cattle menure. In the variants of the study, it was also found that the increase in the initial concentration of ammonia nitrogen in the growth medium up to 160 mg/L significantly reduced the growth of Scenedesmus sp. The results indicated the possibility of a high ammonia nitrogen and orthophosphates removal from anaerobic digestates by Scenedesmus sp. microalgae. Phosphorus concentration in the cultivation medium is a limiting factor for the growth of Scenedesmus sp., thus phosphorus supplementation should be considered when using liquid digestate as the culture medium. The optimization model indicated that the volume of liquid digestate that was used for preparing the cultivation medium, the initial concentration of organic compounds, and the initial concentration of ammonia nitrogen had a significant impact on the production of Scenedesmus sp. biomass.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/6/1432/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061432&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/6/1432/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061432&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Marcin Zieliński; Łukasz Barczak; Paulina Rusanowska; Joanna Kazimierowicz; Marcin Dębowski;doi: 10.3390/en17215287
The development and implementation of innovative production technologies have a direct influence on the creation of new sources of pollution and types of waste. An example of this is the wastewater from soil-less agriculture and the effluent from microbial fuel cells. An important topic is the development and application of methods for their neutralisation that take into account the assumptions of global environmental policy. The aim of the present study was to determine the possibilities of utilising this type of pollution in the process of autotrophic cultivation of the biohydrogen-producing microalgae Tetraselmis subcordiformis. The highest biomass concentration of 3030 ± 183 mgVS/L and 67.9 ± 3.5 mg chl-a/L was observed when the culture medium was wastewater from soil-less agriculture. The growth rate in the logarithmic growth phase was 270 ± 16 mgVS/L-day and 5.95 ± 0.24 mg chl-a/L-day. In the same scenario, the highest total H2 production of 161 ± 8 mL was also achieved, with an observed H2 production rate of 4.67 ± 0.23 mL/h. Significantly lower effects in terms of biomass production of T. subcordiformis and H2 yield were observed when fermented dairy wastewater from the anode chamber of the microbial fuel cell was added to the culture medium.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17215287&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17215287&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Informa UK Limited Authors: Anna Hajduk; Marcin Zieliński; Marcin Dębowski; Marta Kisielewska;pmid: 26672642
The aim of the study was to determine the impact of the constant magnetic field (CMF) application on the effectiveness of anaerobic digestion of algal biomass. The highest yield of biogas in the range of 448.9 L/kg volatile solids (VS) to 456.6 L/kg VS was observed in the variants, in which the retention time in the CMF-exposed area ranged from 144 to 216 min/d. Under these conditions, the concentration of methane in the biogas was nearly 65.0%. The increase in the contact time of the fermentation medium with the CMF-exposed area had a significant impact of reducing the effectiveness of anaerobic digestion. The lowest biodegradation was observed when the retention time was 432 min/d. Under such condition, 281.1 L of biogas/kg VS with methane content of 41.8% was obtained. A correlation between the time of exposure to CMF and the values of parameters characterizing the methane production was found.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09593330.2015.1126362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09593330.2015.1126362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Anna Nowicka; Marcin Zieliński; Marcin Dębowski; Magda Dudek;doi: 10.3390/en14238018
One of the most effective technologies involving the use of lignocellulosic biomass is the production of biofuels, including methane-rich biogas. In order to increase the amount of gas produced, it is necessary to optimize the fermentation process, for example, by substrate pretreatment. The present study aimed to analyze the coupled effects of microwave radiation and the following acids: phosphoric(V) acid (H3PO4), hydrochloric acid (HCl), and sulfuric(VI) acid (H2SO4), on the destruction of a lignocellulosic complex of maize silage biomass and its susceptibility to anaerobic degradation in the methane fermentation process. The study compared the effects of plant biomass (maize silage) disintegration using microwave and conventional heating; the criterion differentiating experimental variants was the dose of acid used, i.e., 10% H3PO4, 10% HCl, and 10% H2SO4 in doses of 0.02, 0.05, 0.10, 0.20, and 0.40 g/gTS. Microwave heating caused a higher biogas production in the case of all acids tested (HCl, H2SO4, H3PO4). The highest biogas volume, exceeding 1800 L/kgVS, was produced in the variant with HCl used at a dose of 0.4 g/gTS.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/23/8018/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14238018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/23/8018/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14238018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Joanna Kazimierowicz; Marcin Dębowski; Marcin Zieliński; Sławomir Kasiński; Jordi Cruz Sanchez;doi: 10.3390/en17020338
The supply of waste glycerol is rising steadily, partially due to the increased global production of biodiesel. Global biodiesel production totals about 47.1 billion liters and is a process that involves the co-production of waste glycerol, which accounts for over 12% of total esters produced. Waste glycerol is also generated during bioethanol production and is estimated to account for 10% of the total sugar consumed on average. Therefore, there is a real need to seek new technologies for reusing and neutralizing glycerol waste, as well as refining the existing ones. Biotechnological means of valorizing waste glycerol include converting it into gas biofuels via anaerobic fermentation processes. Glycerol-to-bioenergy conversion can be improved through the implementation of new technologies, the use of carefully selected or genetically modified microbial strains, the improvement of their metabolic efficiency, and the synthesis of new enzymes. The present study aimed to describe the mechanisms of microbial and anaerobic glycerol-to-biogas valorization processes (including methane, hydrogen, and biohythane) and assess their efficiency, as well as examine the progress of research and implementation work on the subject and present future avenues of research.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17020338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17020338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Justyna Tarapata; Marcin Zieliński; Justyna Zulewska;doi: 10.3390/en15186829
This study aimed at evaluating the methane potential of two ultrafiltration (UFP) and two diafiltration (DFP) permeates generated during milk protein concentration. The permeates were characterized by a different chemical oxygen demand (COD) ranging from 7610 mg O2/L to 57,020 mg O2/L. The CH4 production efficiency was recorded for 20 days and ranged from 149 to 181 NL/kg CODadded. Moreover, the possibilities of the use of UFP/DFP to produce electricity and heat with a combined heat and power (CHP) unit was analyzed to underline the impact of the implementation of anaerobic digestion on the electric and thermal energy requirements of a dairy plant. It was concluded that the application of anaerobic digestion to UFP and DFP treatments generates the energy required to cover all the large-scale dairy plant energy demands and produce extra income. The amount of permeates generated annually in the analyzed dairy plant will enable the production of approx. 22,699 MWh of electricity and 85,516 GJ of heat. This would require a biogas plant with a 3 MW yield. Additionally, the lactose production from UFP/DFP was considered as an alternative or parallel solution for its management. The study confirmed that the biogas and lactose production from UFP/DFP enables plant owners to adjust a plant’s management towards one of these two solutions.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/18/6829/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/18/6829/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu