- home
- Advanced Search
- Energy Research
- 7. Clean energy
- 6. Clean water
- Energies
- Energy Research
- 7. Clean energy
- 6. Clean water
- Energies
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors:Francesco Cutrignelli;
Francesco Cutrignelli
Francesco Cutrignelli in OpenAIREGianmarco Saponaro;
Gianmarco Saponaro
Gianmarco Saponaro in OpenAIREMichele Stefanizzi;
Michele Stefanizzi
Michele Stefanizzi in OpenAIREMarco Torresi;
+1 AuthorsMarco Torresi
Marco Torresi in OpenAIREFrancesco Cutrignelli;
Francesco Cutrignelli
Francesco Cutrignelli in OpenAIREGianmarco Saponaro;
Gianmarco Saponaro
Gianmarco Saponaro in OpenAIREMichele Stefanizzi;
Michele Stefanizzi
Michele Stefanizzi in OpenAIREMarco Torresi;
Marco Torresi
Marco Torresi in OpenAIRESergio Mario Camporeale;
Sergio Mario Camporeale
Sergio Mario Camporeale in OpenAIREdoi: 10.3390/en16020874
Nowadays, mobility represents a key sector to achieve the goal of carbon neutrality. Indeed, the development of hybrid powertrains is contributing to a reduction in the environmental impact of vehicles. One of the most promising energy-saving solutions is regenerative braking, which enables deceleration while recovering energy, otherwise wasted. Even though much scientific community effort has been addressed to the optimization of this technology in the automotive field, the increase of energy storage systems efficiencies enables the overcoming of the constraints related to the reuse of electric energy in railway vehicles. This solution could be extremely useful for those railway vehicles which operate on non-electrified lines, where traction is usually provided by diesel engines. For this reason, the present work focuses on how regenerative braking technology could be exploited in diesel-powered rail applications. In further detail, a diagnostic train working on real railway lines has been considered as a case study. Given the real duty-cycle of the vehicle, a simulation model has been developed with the aim of evaluating the amount of energy recovered during braking phases and, consequently, the fuel saving and the avoided CO2 emissions. As a result, the analysis shows an improved energy efficiency of propulsion system. Compared with a pure diesel operation, it leads to fuel savings of 20%, a reduction of CO2 emissions of 22.3 kg with 23.25 kWh stored in the battery at the end of the route.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16020874&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16020874&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors:Vibha Kamaraj;
Vibha Kamaraj
Vibha Kamaraj in OpenAIREN. Chellammal;
N. Chellammal
N. Chellammal in OpenAIREBharatiraja Chokkalingam;
Bharatiraja Chokkalingam
Bharatiraja Chokkalingam in OpenAIREJosiah Lange Munda;
Josiah Lange Munda
Josiah Lange Munda in OpenAIREdoi: 10.3390/en13246534
This paper proposes a digital model predictive controller (DMPC) for a multi-input multi-output (MIMO) DC-DC converter interfaced with renewable energy resources in a hybrid system. Such MIMO systems generally suffer from cross-regulation, which seriously impacts the stability and speed of response of the system. To solve the contemporary issues in a MIMO system, a controller is required to attenuate the cross-regulation. Therefore, this paper proposes a controller, which increases speed of response and maintains stable output by regulating the load voltage independently. The inductor current and the capacitor voltage of the proposed converter are considered as the controlling parameters. With the aid of Forward Euler’s procedure, the future values are computed for the instantaneous values of controlling parameters. Cost function defines the control action by the predicted values that describe the system performance and establish optimal condition at which the output of the system is required. This allows proper switching of the system, thereby helping to regulate the output voltages. Thus, for any variation in load, the DMPC ensures steady switching operation and minimization of cross-regulation. To prove the efficacy of proposed DMPC controller, simulations followed by the experimental results are executed on a hybrid system consisting of dual-input dual-output (DIDO) positive Super-Lift Luo converter (PSLLC) interfaced with photovoltaic renewable energy resource. The results thus obtained are compared with the conventional PID (proportional integrative derivative) controller for validation and prove that the DMPC controller is able to control the cross-regulation effectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13246534&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13246534&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors:Ahmed Zouinkhi;
Ahmed Zouinkhi
Ahmed Zouinkhi in OpenAIREAymen Flah;
Aymen Flah
Aymen Flah in OpenAIRELucian Mihet-Popa;
Lucian Mihet-Popa
Lucian Mihet-Popa in OpenAIREdoi: 10.3390/en14206613
Energy safe is mandatory for all isolated IoT tools, such as in long way roads, mountains, or even in smart cities. If increasing the lifetime of these tools, the rentability of the global network loop becomes more efficient. Therefore, this paper presents a new approach for saving energy inside the source nodes by supervising the state of energy inside each source node and calculating the duty cycle factor. The relationship between these parameters is based on an optimization problem formulation. In this respect, the present paper is designed to propose a new approach that deals with increasing the lifetime of the wireless sensor network (WSN)-attached nodes, as fixed in the application. The newly devised design is based on implementing the IEEE 802.15.4 standard beacon-enabled mode, involving a cluster tree topology. Accordingly, every subgroup is allotted to apply a specifically different duty cycle, depending on the battery’s remaining energy level, which contributes to creating a wide range of functional modes. Hence, various thresholds are defined. Simulation results prove the efficiency of the proposed approach and show the energetic benefit. The proposed flowchart has minimized the consumed energy for the WSN, which improves the battery lifetime and enhances the IoT application’s robustness. Simulations and experiments have been carried out under different conditions and the results prove that the proposed method is a viable solution.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14206613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14206613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG doi: 10.3390/en13123259
The common analog approach and ensemble methods in photovoltaic (PV) power forecasting are based on the forecasts from several numerical weather prediction (NWP) models. These may be not applicable to the very-short-term PV power forecasting, since forecasts based on NWP models are reliable in horizons longer than six hours. In this paper, a methodology for one-hour-ahead PV power forecasting is proposed. Instead of the NWP models, the persistence method is applied in the analog approach to produce meteorological forecasts. The historical data with meteorological predictions similar to the target forecast hour are identified to train the forecast model. Then, the feed forward neural networks (FNNs) act as the base predictors of the neural network ensemble method to replace the NWP-based PV power prediction methods. The forecast results produced by the FNNs are combined by the random forest (RF) algorithm. The performance of the proposed method is evaluated on a real grid-connected PV plant located in Southeast China. Results show that the proposed method outperforms six benchmark models: the persistence model, the support vector regression (SVR) model, the linear regression model, the RF model, the gradient boosting model, and XGBoost model. The improvements reach up to over 40% for the standard error metrics.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13123259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13123259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Saudi ArabiaPublisher:MDPI AG Authors: Alex G. Young;Aaron W. Costall;
Aaron W. Costall
Aaron W. Costall in OpenAIREDaniel Coren;
Daniel Coren
Daniel Coren in OpenAIREJames W. G. Turner;
James W. G. Turner
James W. G. Turner in OpenAIREdoi: 10.3390/en14206696
handle: 10754/672889
Opposed-piston, two-stroke engines reveal degrees of freedom that make them excellent candidates for next generation, highly efficient internal combustion engines for hybrid electric vehicles and power systems. This article reports simulation results that explore the influence of key control and geometrical parameters, specifically crankshaft phasing and intake and exhaust port height-to-stroke ratios, in obtaining best thermal efficiency. A model of a 0.75 L, single-cylinder opposed-piston two-stroke engine is exercised to predict fuel consumption as engine speed, load, crankshaft phasing, intake and exhaust port height-to-stroke ratios, and stoichiometry are varied for medium-duty truck and range extender applications. Under stoichiometric operation, optimal crankshaft phasing is seen at 0–5°, lower than reported in the literature. If stoichiometric operation is not mandated, best fuel consumption is achieved at an air-to-fuel equivalence ratio λ = 1.25 and 5–10° crankshaft phase angle, enabling a ~10 g/kWh (~4%) improvement in average brake-specific fuel consumption across medium-duty truck operating points. In range extender form, the engine provides 30 kW output power in accordance with a survey of range extender engines. In this role, there is a clear distinction between low-speed, high-load operation and vice versa. The decision as to which is more appropriate would be based on minimizing total owning and operating cost, itself a trade-off between better thermal efficiency (and thus lower fuel cost) and greater durability.
King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BYFull-Text: https://www.mdpi.com/1996-1073/14/20/6696Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14206696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BYFull-Text: https://www.mdpi.com/1996-1073/14/20/6696Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14206696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Amor Hamied;Adel Mellit;
Adel Mellit
Adel Mellit in OpenAIREMohamed Benghanem;
Mohamed Benghanem
Mohamed Benghanem in OpenAIRESahbi Boubaker;
Sahbi Boubaker
Sahbi Boubaker in OpenAIREdoi: 10.3390/en16093860
In this paper, a low-cost monitoring system for an off-grid photovoltaic (PV) system, installed at an isolated location (Sahara region, south of Algeria), is designed. The PV system is used to supply a small-scale greenhouse farm. A simple and accurate fault diagnosis algorithm was developed and integrated into a low-cost microcontroller for real time validation. The monitoring system, including the fault diagnosis procedure, was evaluated under specific climate conditions. The Internet of Things (IoT) technique is used to remotely monitor the data, such as PV currents, PV voltages, solar irradiance, and cell temperature. A friendly web page was also developed to visualize the data and check the state of the PV system remotely. The users could be notified about the state of the PV system via phone SMS. Results showed that the system performs better under this climate conditions and that it can supply the considered greenhouse farm. It was also shown that the integrated algorithm is able to detect and identify some examined defects with a good accuracy. The total cost of the designed IoT-based monitoring system is around 73 euros and its average energy consumed per day is around 13.5 Wh.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16093860&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16093860&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Authors:Hafiz Hussain;
Hafiz Hussain
Hafiz Hussain in OpenAIRENadeem Javaid;
Nadeem Javaid
Nadeem Javaid in OpenAIRESohail Iqbal;
Sohail Iqbal
Sohail Iqbal in OpenAIREQadeer Hasan;
+2 AuthorsQadeer Hasan
Qadeer Hasan in OpenAIREHafiz Hussain;
Hafiz Hussain
Hafiz Hussain in OpenAIRENadeem Javaid;
Nadeem Javaid
Nadeem Javaid in OpenAIRESohail Iqbal;
Sohail Iqbal
Sohail Iqbal in OpenAIREQadeer Hasan;
Qadeer Hasan
Qadeer Hasan in OpenAIREKhursheed Aurangzeb;
Khursheed Aurangzeb
Khursheed Aurangzeb in OpenAIREMusaed Alhussein;
Musaed Alhussein
Musaed Alhussein in OpenAIREdoi: 10.3390/en11010190
The traditional power grid is inadequate to overcome modern day challenges. As the modern era demands the traditional power grid to be more reliable, resilient, and cost-effective, the concept of smart grid evolves and various methods have been developed to overcome these demands which make the smart grid superior over the traditional power grid. One of the essential components of the smart grid, home energy management system (HEMS) enhances the energy efficiency of electricity infrastructure in a residential area. In this aspect, we propose an efficient home energy management controller (EHEMC) based on genetic harmony search algorithm (GHSA) to reduce electricity expense, peak to average ratio (PAR), and maximize user comfort. We consider EHEMC for a single home and multiple homes with real-time electricity pricing (RTEP) and critical peak pricing (CPP) tariffs. In particular, for multiple homes, we classify modes of operation for the appliances according to their energy consumption with varying operation time slots. The constrained optimization problem is solved using heuristic algorithms: wind-driven optimization (WDO), harmony search algorithm (HSA), genetic algorithm (GA), and proposed algorithm GHSA. The proposed algorithm GHSA shows higher search efficiency and dynamic capability to attain optimal solutions as compared to existing algorithms. Simulation results also show that the proposed algorithm GHSA outperforms the existing algorithms in terms of reduction in electricity cost, PAR, and maximize user comfort.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11010190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 133 citations 133 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11010190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Taiyu Bian; Tianhong Zhou; Yang Zhang;doi: 10.3390/en15228442
Ferroelectric oxides possess abundant fascinating physical functionalities, such as electro-optic, acousto-optic, and nonlinear optical characteristics, etc. However, most pristine ferroelectric oxides exhibit no efficient luminescent properties due to the indirect and wide bandgap. Rare-earth-doped phosphors demonstrate advantages such as sharp emission bandwidths, large Stokes shift, high photonstability, and low toxicity. The combination of rare-earth ions and ferroelectric oxides has shown great potential in optical sensing, lighting, solar cells, and other applications. Rare-earth-doped ferroelectric oxides exhibit efficient upconversion or downconversion luminescence in the range of ultraviolet (UV) to near-infrared (NIR) regions. In this article, the preparation process of rare-earth-doped ferroelectric oxides and the preparation methods of thin films are introduced. Their recent applications in optical sensing, lighting, and solar cells are highlighted. The review concludes with a brief summary of all related branches and discusses the potential direction of this field.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15228442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15228442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type , Preprint 2021Publisher:MDPI AG Authors: Filip Fidanoski;Kiril Simeonovski;
Kiril Simeonovski
Kiril Simeonovski in OpenAIREVioleta Cvetkoska;
Violeta Cvetkoska
Violeta Cvetkoska in OpenAIREThis paper is about energy as viewed through an integrated model that links energy with environment, technology and urbanisation as related areas. Our goal is to empirically investigate the (in)efficient energy use across 30 developed OECD member states during the period from 2001 to 2018. For that purpose, we set up an output-oriented BCC data envelopment analysis that employs a set of input variables with non-negative values to calculate the efficiency scores on minimising energy use and losses as well as environmental emissions. We develop a couple of baseline models for primary energy and secondary energy (electricity) in which we find that countries have mean inefficiency margins of 16.1 per cent for primary energy and from 10.8 to 13.5 per cent for electricity. Then, we extend the baseline models by adding environment as an important closely related concept and confirm the consistency of the baseline findings. In the context of this analysis, however, the inefficiency scores, on the one hand, point out to a mismatch in the utilisation of the inputs to produce efficiency but, on the other hand, they uncover a hidden potential to increasy efficiency through re-allocation under constant inputs.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.20944/prepr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202101.0467.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.20944/prepr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202101.0467.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:MDPI AG doi: 10.3390/en15010270
The utilization of solar energy into electrochemical reduction systems has received considerable attention. Most of these attempts have been conducted in a single electrolyte without a membrane. Here, we report the system combined by the electrochemical CO2 reduction on the Au dendrite electrode and the water oxidation on the Co-Pi electrode with a Nafion membrane. An efficient reduction of CO2 to CO in the cathode using the proton from water oxidation in the anode is conducted using perovskite solar cells under 1 sun condition. The sustainable reaction condition is secured by balancing each reaction rate based on products analysis. Through this system, we collect reduction products such as CO and H2 and oxidation product, O2, separately. Employing separation of each electrode system and series-connected perovskite solar cells, we achieve 8% of solar to fuel efficiency with 85% of CO selectivity under 1 sun illumination.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15010270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15010270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu