- home
- Advanced Search
- Energy Research
- Renewable Energy
- Tsinghua University
- Energy Research
- Renewable Energy
- Tsinghua University
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Qinghong Tang; An Yu; Yongshuai Wang; Yibo Tang; Yifu Wang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.12.086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.12.086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Lei Tan; Shuliang Cao; Ming Liu;Abstract Multiphase pump is widely applied for the exploitation of oil-gas resources in off-shore platforms. It is essential to investigate the performance of multiphase pumps when handling high viscosity fluid. A three-stage helico-axial multiphase pump with working fluids under various viscosities is investigated in the present study. Both energy performance and flow fields have been discussed with different viscosities. The influences of viscosity, flow rate and blade height on the distribution of turbulence kinetic energy are analyzed. Results show that both pump head and efficiency gradually reduce with the rise of viscosity when handling high viscosity fluid. The rise of viscosity and blade height, and the decline of flow rate will lead to an increase of turbulence kinetic energy. Characteristics of partial differential equations are employed to reveal the influence of viscosity, and a theoretical model has been established to predict the influence of flow rate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.08.129&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.08.129&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Zhengwei Wang; Qiang Guo; Lingjiu Zhou;Abstract Recent studies have coupled blade element momentum (BEM) theory with the Reynolds Averaged Navier–Stokes equations in computational fluid dynamics (CFD) software, as the BEM-CFD method to analyse the flows in marine current turbines is with much less computational resources. The accuracy of the BEM-CFD calculation was evaluated by analysing the performance and flow field characteristics of an isolated horizontal axis marine current turbine with comparisons to a full rotor geometry simulation and experimental data. The comparisons show that the full rotor geometry simulation gives good predictions near the optimal conditions (TSR = 5–7), but is less accurate for off-design conditions. The BEM-CFD results, which are based on two-dimensional hydrofoil theory, are evaluated using the experimental and numerical lift and drag coefficients. It shows that the two-dimensional lift and drag coefficients had significant effects on the BEM-CFD predictions. Overall, the BEM-CFD based on the numerical hydrofoil data can accurately predict the thrust, but generally overestimates the power. The influence of the lift and drag terms on the BEM-CFD predictions suggest that more reasonable 2D predictions for hydrofoils and the 3D effects should be considered to improve the BEM-CFD accuracy. BEM-CFD can reasonably reflect the circumferential averaged velocity characteristics near the rotor for the optimal condition (TSR = 6) and gets symmetrical features in the wake, but it cannot predict the detailed flow features caused by the finite number of blades due to the limitations of the BEM-CFD method.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2014.10.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2014.10.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Xiaomeng Chen; Daoliang Li; Xudong Yang; Yang Wang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Rui Chang; Yong Luo; Rong Zhu;Abstract Solar energy has developed rapidly in recent years, and its impacts on climate have been revealed mainly through model simulations and limited field observations. However, the representation of solar plants in these models is highly simplistic and does not account for dynamical effects, which may pose risks under the simulations for tracking photovoltaics (PV). To make a more comprehensive assessment of the PV-induced climatic impacts, it is relevant to further develop a more sophisticated PV module based on the observed PV-induced impacts from specific cases. To remedy the deficiencies in the existing PV energy models, the newly sophisticated PV module established in this paper includes both the land surface radiation balance, sensible heat balance and the surface physical dray process over the locations of PV plants. It is then used to simulate the local climatic impacts of PV plants through three parallel sensitivity experiments. Comparison analysis between control run and two PV installation scenarios showed obvious changes in the 10-m wind speed, land surface temperature, and 2-m specific humidity were found locally over the locations of PV plants during both the warm and cold periods. The magnitudes of these changes are positively related to the installed capacity of the PV plants, but are much smaller than the natural climate variations. It is expected that the observation-based PV module established in this paper is a meaningful attempt for the model simulation on this field.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.06.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.06.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Peng Ren; Pucheng Pei; Dongfang Chen; Lu Zhang; Yuehua Li; Xin Song; Mingkai Wang; He Wang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.05.153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.05.153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Fan Honggang; Wang Zhengwei; Hu Wanfeng;Abstract The S-shaped characteristics of the pump-turbine may cause instability and thus leads to difficulties in grid synchronization. This paper develops a complete model for a pumped storage power plant and studies the start-up and grid synchronization procedure of two 300 MW variable speed units at no load in turbine mode. Based on the grid-voltage-oriented vector control method, the stator voltage of the doubly-fed induction machine is controlled to meet the grid connection requirements. Compared with the fixed speed units, the simulation results show that for a pump-turbine with typical S-shaped characteristics, the fixed speed unit cannot meet the grid connection requirements due to the unstable unit speed. Whereas, the variable speed unit can quickly reach synchronization with the grid voltage. For a pump-turbine without typical S-shaped characteristics, the synchronous unit can meet the grid connection requirements, but it takes a longer time and the stator voltage is not stable enough, while the variable speed unit is 11 times faster and more stable. The effects of PI parameters on the synchronization process of a variable speed unit are also studied. The results show that with suitable PI control parameters, the synchronization process can be accelerated without large overshoot of the rotor power.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.04.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.04.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Tian Yan; Xuan Zhou; Xinhua Xu; Jinghua Yu; Xianting Li;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.06.144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.06.144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Zhenchao Li; Yanyan Zhao; Yong Luo; Liwei Yang; Peidu Li; Xiao Jin; Junxia Jiang; Rong Liu; Xiaoqing Gao;Abstract In order to identify impacts of photovoltaic (PV) power plant on surface radiation, this paper conducted a comparative study on the surface radiation and surface albedo characteristics between the PV site and reference site in the Gobi area in Xingjiang, China in the summer of 2020. The results show that, the upward long-wave radiation at the PV site was significantly lower than that at the reference site in the night, while the two were basically the same during the daytime. The average surface albedo at the PV site (0.14) was 39.1% lower than that at the reference site (0.23). Net radiation was higher at the PV site than that at the reference site throughout the whole day. The average net radiation of the underlying surface at the PV site was 30.7% more than that at the reference site, 75% of which was contributed by lower upward shortwave radiation and 25% was due to nocturnal lower upward longwave radiation at the PV site.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.10.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.10.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Wenwu Zhang; Zhe Ma; Baoshan Zhu; Xing Xie;Abstract Due to the effect of unit stages, the gas-liquid flow and the interphase forces in the multistage multiphase pump are more disordered, which will affect the energy conversion efficiency. However, the characteristics of phase interaction and gas holdup in such a pump are not clear. In this study, based on a modified Euler two-fluid model, simulations of a multiphase rotodynamic pump with two stages were carried out with medium combinations of air-water and air-crude. The characteristics of phase interaction and gas holdup were analyzed at different inlet gas void fractions (IGVFs), and inlet bubble diameters. The results show that the overall changing trend of interphase forces is the same between the first and second stages at different IGVFs, but the magnitudes of interphase forces in the second stage are slightly smaller, especially for the medium combination of air-water. Moreover, the drag is more sensitive to the IGVF, while the lift and added mass force are more sensitive to the medium viscosity. As the increase of the inlet bubble diameter, the difference of the gas holdup effect in the pump increases gradually at IGVF = 9.0%, and the maximum almost occurs in the first stage guide vane (S1). When the bubble diameter increases to 0.7 mm, the degree of gas accumulation and gas-liquid velocity difference increase significantly, resulting in a significant increase of the disordered degree of lift and added mass force.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.10.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.10.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Qinghong Tang; An Yu; Yongshuai Wang; Yibo Tang; Yifu Wang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.12.086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.12.086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Lei Tan; Shuliang Cao; Ming Liu;Abstract Multiphase pump is widely applied for the exploitation of oil-gas resources in off-shore platforms. It is essential to investigate the performance of multiphase pumps when handling high viscosity fluid. A three-stage helico-axial multiphase pump with working fluids under various viscosities is investigated in the present study. Both energy performance and flow fields have been discussed with different viscosities. The influences of viscosity, flow rate and blade height on the distribution of turbulence kinetic energy are analyzed. Results show that both pump head and efficiency gradually reduce with the rise of viscosity when handling high viscosity fluid. The rise of viscosity and blade height, and the decline of flow rate will lead to an increase of turbulence kinetic energy. Characteristics of partial differential equations are employed to reveal the influence of viscosity, and a theoretical model has been established to predict the influence of flow rate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.08.129&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.08.129&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Zhengwei Wang; Qiang Guo; Lingjiu Zhou;Abstract Recent studies have coupled blade element momentum (BEM) theory with the Reynolds Averaged Navier–Stokes equations in computational fluid dynamics (CFD) software, as the BEM-CFD method to analyse the flows in marine current turbines is with much less computational resources. The accuracy of the BEM-CFD calculation was evaluated by analysing the performance and flow field characteristics of an isolated horizontal axis marine current turbine with comparisons to a full rotor geometry simulation and experimental data. The comparisons show that the full rotor geometry simulation gives good predictions near the optimal conditions (TSR = 5–7), but is less accurate for off-design conditions. The BEM-CFD results, which are based on two-dimensional hydrofoil theory, are evaluated using the experimental and numerical lift and drag coefficients. It shows that the two-dimensional lift and drag coefficients had significant effects on the BEM-CFD predictions. Overall, the BEM-CFD based on the numerical hydrofoil data can accurately predict the thrust, but generally overestimates the power. The influence of the lift and drag terms on the BEM-CFD predictions suggest that more reasonable 2D predictions for hydrofoils and the 3D effects should be considered to improve the BEM-CFD accuracy. BEM-CFD can reasonably reflect the circumferential averaged velocity characteristics near the rotor for the optimal condition (TSR = 6) and gets symmetrical features in the wake, but it cannot predict the detailed flow features caused by the finite number of blades due to the limitations of the BEM-CFD method.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2014.10.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2014.10.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Xiaomeng Chen; Daoliang Li; Xudong Yang; Yang Wang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Rui Chang; Yong Luo; Rong Zhu;Abstract Solar energy has developed rapidly in recent years, and its impacts on climate have been revealed mainly through model simulations and limited field observations. However, the representation of solar plants in these models is highly simplistic and does not account for dynamical effects, which may pose risks under the simulations for tracking photovoltaics (PV). To make a more comprehensive assessment of the PV-induced climatic impacts, it is relevant to further develop a more sophisticated PV module based on the observed PV-induced impacts from specific cases. To remedy the deficiencies in the existing PV energy models, the newly sophisticated PV module established in this paper includes both the land surface radiation balance, sensible heat balance and the surface physical dray process over the locations of PV plants. It is then used to simulate the local climatic impacts of PV plants through three parallel sensitivity experiments. Comparison analysis between control run and two PV installation scenarios showed obvious changes in the 10-m wind speed, land surface temperature, and 2-m specific humidity were found locally over the locations of PV plants during both the warm and cold periods. The magnitudes of these changes are positively related to the installed capacity of the PV plants, but are much smaller than the natural climate variations. It is expected that the observation-based PV module established in this paper is a meaningful attempt for the model simulation on this field.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.06.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.06.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Peng Ren; Pucheng Pei; Dongfang Chen; Lu Zhang; Yuehua Li; Xin Song; Mingkai Wang; He Wang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.05.153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.05.153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Fan Honggang; Wang Zhengwei; Hu Wanfeng;Abstract The S-shaped characteristics of the pump-turbine may cause instability and thus leads to difficulties in grid synchronization. This paper develops a complete model for a pumped storage power plant and studies the start-up and grid synchronization procedure of two 300 MW variable speed units at no load in turbine mode. Based on the grid-voltage-oriented vector control method, the stator voltage of the doubly-fed induction machine is controlled to meet the grid connection requirements. Compared with the fixed speed units, the simulation results show that for a pump-turbine with typical S-shaped characteristics, the fixed speed unit cannot meet the grid connection requirements due to the unstable unit speed. Whereas, the variable speed unit can quickly reach synchronization with the grid voltage. For a pump-turbine without typical S-shaped characteristics, the synchronous unit can meet the grid connection requirements, but it takes a longer time and the stator voltage is not stable enough, while the variable speed unit is 11 times faster and more stable. The effects of PI parameters on the synchronization process of a variable speed unit are also studied. The results show that with suitable PI control parameters, the synchronization process can be accelerated without large overshoot of the rotor power.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.04.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.04.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Tian Yan; Xuan Zhou; Xinhua Xu; Jinghua Yu; Xianting Li;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.06.144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.06.144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Zhenchao Li; Yanyan Zhao; Yong Luo; Liwei Yang; Peidu Li; Xiao Jin; Junxia Jiang; Rong Liu; Xiaoqing Gao;Abstract In order to identify impacts of photovoltaic (PV) power plant on surface radiation, this paper conducted a comparative study on the surface radiation and surface albedo characteristics between the PV site and reference site in the Gobi area in Xingjiang, China in the summer of 2020. The results show that, the upward long-wave radiation at the PV site was significantly lower than that at the reference site in the night, while the two were basically the same during the daytime. The average surface albedo at the PV site (0.14) was 39.1% lower than that at the reference site (0.23). Net radiation was higher at the PV site than that at the reference site throughout the whole day. The average net radiation of the underlying surface at the PV site was 30.7% more than that at the reference site, 75% of which was contributed by lower upward shortwave radiation and 25% was due to nocturnal lower upward longwave radiation at the PV site.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.10.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.10.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Wenwu Zhang; Zhe Ma; Baoshan Zhu; Xing Xie;Abstract Due to the effect of unit stages, the gas-liquid flow and the interphase forces in the multistage multiphase pump are more disordered, which will affect the energy conversion efficiency. However, the characteristics of phase interaction and gas holdup in such a pump are not clear. In this study, based on a modified Euler two-fluid model, simulations of a multiphase rotodynamic pump with two stages were carried out with medium combinations of air-water and air-crude. The characteristics of phase interaction and gas holdup were analyzed at different inlet gas void fractions (IGVFs), and inlet bubble diameters. The results show that the overall changing trend of interphase forces is the same between the first and second stages at different IGVFs, but the magnitudes of interphase forces in the second stage are slightly smaller, especially for the medium combination of air-water. Moreover, the drag is more sensitive to the IGVF, while the lift and added mass force are more sensitive to the medium viscosity. As the increase of the inlet bubble diameter, the difference of the gas holdup effect in the pump increases gradually at IGVF = 9.0%, and the maximum almost occurs in the first stage guide vane (S1). When the bubble diameter increases to 0.7 mm, the degree of gas accumulation and gas-liquid velocity difference increase significantly, resulting in a significant increase of the disordered degree of lift and added mass force.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.10.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.10.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu