- home
- Search
Filters
Clear All- Energy Research
- Restricted
- CNR ExploRA
- Transport Research
- Energy Research
- Restricted
- CNR ExploRA
- Transport Research
description Publicationkeyboard_double_arrow_right Report 2018 ItalyAuthors: Elisabetta Punta; Sabato D'Auria; Maria Staiano;Documento redatto dagli autori nell'ambito del progetto Interdipartimentale Foresight S&T internazionale del CNR costituito con protocollo AMMCNT-CNR no. 0049037 in data 14/07/2015 a firma del Presidente. Il documento è stato presentato e discusso nella riunione del CE del progetto in data 23/01/2018.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::98ca5a70d2185c827d7b7e722b075319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::98ca5a70d2185c827d7b7e722b075319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Funded by:MIURMIURAuthors: Ottorino Veneri; Clemente Capasso; Stanislao Patalano;Fleets of commercial vehicles for delivery services in urban areas constitute road transportation means which are required to run relatively short distances and to respect anti-pollution laws commonly imposed by many municipalities. For this kind of commercial applications, high efficiency and eco-friendly electric propulsion systems offer an interesting alternative to thermal engines. This paper is focused on the analysis of such solution, by presenting experimental results obtained with a ZEBRA battery based propulsion system, designed to power a specific urban unit within the category of electric commercial vehicles. A novel contribution is added to the relevant literature concerning battery based electric powertrains for road vehicles. The main novelty consists in a wide range of experimental results and performance analysis carried out with reference to the real behavior of both the whole propulsion system and each main component, when powering the commercial vehicle, on the urban part of the NEDC (New European Driving Cycle) standard driving cycle, at different slopes. The experimental results, expressed through electrical and mechanical parameters, are initially evaluated by means of a quasi-static numerical model of the electric powertrain and then experimentally verified with the support of a 1:1 scale laboratory dynamic test bench. The procedure followed and presented in this paper definitely demonstrates the good design and performance, obtained for the evaluated propulsion system, in satisfying the real energy and power requirements, specific of an urban use for delivery commercial vehicles, in terms of daily autonomy and slopes. The collections of experimental results, analyzed in the paper, represent in addition a useful set of data for simulation in order to build, verify and improve models in their outputs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.01.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 40 citations 40 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.01.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Authors: Ottorino Veneri; Clemente Capasso; Stanislao Patalano;This paper is aimed to experimentally analyse the effectiveness of a hybrid storage system, when powering a commercial vehicle for urban use. The hybrid energy storage system is composed by two ZEBRA batteries, combined with an electric double layer capacitor (EDLC) module. The integration of those storage systems is obtained by means of a bidirectional DC/DC converter, which balances the electric power fluxes between batteries and super-capacitors, depending on the driving operative conditions. Modeling and simulations are preliminarily conducted with reference to the specific case study of an electric version of the Renault Master, supplied by the above described hybrid storage system. That theoretical activity allows the optimization of rule based energy management strategies for the hybrid energy storage system, in terms of the effectiveness in reducing the negative effects of high charging/discharging currents on battery durability. Then, the experimentation of the real power train, connected to the mentioned hybrid storage system, is carried out through a 1:1 laboratory test bench, able to perform the analysed energy management strategies on standard driving cycles, representative of the urban mission of the commercial vehicle under study. The obtained experimental results, expressed through electrical and mechanical parameters in a wide range of road operative conditions, show that the super-capacitors can improve the expected battery lifespan, with values of maximum effectiveness up to 52%, for driving patterns without negative road slopes. The procedure followed and presented in this paper definitely demonstrates the good performance of the evaluated hybrid storage system, controlled by the DC/DC power converter, to reduce the negative consequences of the power peaks associated with the urban use of commercial vehicles.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 84 citations 84 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Funded by:MIURMIURAuthors: Ottorino Veneri; Clemente Capasso;This paper is aimed to analyze design criteria, setting up, control strategies and experimental tests related to a power configuration of DC micro-grid for fast charging of full electric and plug in hybrid vehicles. The proposed DC fast charging architecture is derived by an analysis comparing the main characteristics of well known architectures, mainly based on AC and DC bus, taking also into account the integration of renewable energy sources (RESs) with stationary energy storage systems and fleets of road electric/hybrid vehicles. On the base of the proposed architecture a laboratory prototype of charging station has been realized by means of a 20. kW AC/DC bidirectional grid tie converter interconnected with two different power DC/DC converters of similar rated power. In this micro-grid architecture the AC/DC converter realizes a conversion stage at 790. V DC, whereas other two converters allow either the electric vehicle battery packs to be charged or an energy storage buffer to save electric energy and support the main grid during the fast charging operations. The laboratory tests described in this paper are mainly devoted to characterize the laboratory demonstrator, in different operative conditions, such as vehicle-to-grid (V2G), charging/discharging operations of different types of storage systems and fast charging operations of road electric vehicles. Then the study of the proposed power conversion architecture is focused on the evaluation of charging/discharging power, efficiency, energy flux management and its impact on the main grid. In addition proper control strategies are evaluated and implemented, allowing the proposed architecture to follow the required operations. The obtained experimental results demonstrate real advantages in terms of charging times and power requirements from the main grid, when adopting DC buffer architecture for fast charging operations. Finally, these results support the identification of a knowledge base, useful to evaluate energy management and control strategies to be adopted for DC charging stations and each one of their power converters in a smart grid scenario with distributed generation systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.04.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 90 citations 90 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.04.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1999 Australia, Australia, ItalyPublisher:Elsevier BV Ambrosino, G; Sassoli, P; BIELLI, M; Carotenuto, P; Romanazzo, M;An integrated software tool environment is presented, and a methodology is proposed for the operational support of the local authority, for analysis of the impact of transport measures in terms of network energy consumption and pollutant emissions. It is based on work done by the European Union within the save program (speci®c actions for vigorous energy eciency)ÐSlam project (supporting local authorities methodology). As background, the Slam project is described, with the principal aspects and needs of environmental and trac network management. The central section de®nes a methodology able to support technicians in recognizing the trac asset and decision makers in evaluating interventions on urban transport infrastructures or technological systems. The role of the di€erent models and their interactions with the transport telematics services currently active on the Florence (Italy) network is discussed. Finally, the procedure for calculating the trac impacts on energy consumption is described with the help of a test case, the evaluation of a dedicated bus corridor in Florence. # 1999 Published by Elsevier Science Ltd. All rights reserved.
CNR ExploRA arrow_drop_down Transportation Research Part D Transport and EnvironmentArticle . 1999 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefTransportation Research Part D Transport and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s1361-9209(98)00014-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Transportation Research Part D Transport and EnvironmentArticle . 1999 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefTransportation Research Part D Transport and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s1361-9209(98)00014-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2018 ItalyAuthors: Capasso, Clemente; Veneri, Ottorino; Assante, Dario;This paper deals with the use of laboratory test benches as a novel platform for educational purposes. In this regard, some laboratory facilities of National Research Council of Italy Istituto Motori (in Naples) are analyzed as case study of an experimental learning platform for engineers and operators in the field of Internet of Energy (IoE). In particular, these facilities are devoted to study the main components of a smart grid, with particular attention on electric power-trains, energy storage systems, renewable energy sources and fast charging architectures for electric vehicles. The laboratory tools can be locally and remotely controlled by each learner, involved in training courses based on this platform, through acquisition and control devices, which can be managed by means of programmable software interfaces. In this way, the proposed learning platform represents a novel educational instrument to train new professional profiles, with particular skills on ICT technologies, software programming and hardware management for IoE applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::495ea33f728bdb980eff1bd19aa3431b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::495ea33f728bdb980eff1bd19aa3431b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Elsevier BV Authors: Diego Iannuzzi; Clemente Capasso; Ottorino Veneri;This paper is aimed to present an experimental criterion that allows researchers and designers to evaluate the performance of DC micro-grids dedicated to charging operations of full EV. The laboratory methodology is explained through tests on a demonstrator of power architecture, specifically designed as simplified case study of a DC charging station for fully-electrified low-power two-wheeler, such as: electric scooters and bikes. This experimental prototype is composed by a 20. kW AC/DC bidirectional grid-tied converter, which realizes the DC conversion stage, and two DC/DC power converters, interconnected with the micro-grid through a DC bus. The power architecture provides on one hand the charging operations of electric two-wheeler battery packs and on the other hand the integration of the micro-grid with an ES buffer, which has the main function of supporting the main grid while an electric vehicle is on charge. The performance of the considered architecture is characterized and analyzed in different operative conditions, through a specific management of the energy fluxes. The laboratory tests evaluate efficiency, charging times and impact on the main grid, with specific reference to the DC charging operations of electric scooters. The obtained experimental results show the advantages of adopting the DC buffer architecture, compared with an AC commercial battery charger, considered as reference in this work. Finally, the numerical data of this paper, related to the single power components and to the experimental results evaluated for the whole demonstrator, effectively support the lack of knowledge in the literature about charging stations for EVs. In fact, these pieces of information, based on experimental tests, are expected to support the building of simulation models and the identification of the best energy management and control strategies to be adopted in a smart-grid scenario, characterized by distributed generation systems including renewable energy sources.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.03.138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.03.138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2013 ItalyAuthors: Capasso C.; Veneri O.;This paper deals with the design criteria, setting up and experimental tests concerning an architecture of DC micro-grid for fast recharging stations of road full electric and hybrid vehicles. The proposed DC fast charging architecture was conceived as the best solution coming from a comparative analysis among well known different architectures, mainly based on AC and DC bus. This analysis evaluated the impact on the main grid, efficiency and charging/discharging power when recharging different kinds of battery packs from real vehicles. Then, a laboratory recharging station was built by means of a 20 kW AC/DC bidirectional grid tie converter interconnected with two different high power DC/DC converters. Through this architecture, the first converter realizes a DC conversion stage at 800 V, whereas the other two converters allow the electric vehicles battery packs to be recharge and a storage buffer to save electric energy when required. Laboratory tests, described in this paper, were mainly devoted to characterize the recharging station in different operative conditions, such as island and vehicle-to-grid (V2G) operation mode, and connecting different types of storage systems to be recharged through the DC fast charging station. The experimental results allowed the identification of energy management and control strategies of each converter and whole recharging station, in order to optimize the energy losses of the power conversion and recharging times, taking into account its interaction with main grid, renewable energy sources, energy storage systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::368d2c4f57b2aef3134f38f0a0e2c0d1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::368d2c4f57b2aef3134f38f0a0e2c0d1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2013 ItalyPublisher:IEEE Authors: A. Del Pizzo; Ottorino Veneri; Clemente Capasso; L. Ferraro;This paper is focused on the design criteria of the power conversion systems operating within ultra-fast charging stations for electric vehicles. The proposed architecture is based on a DC bus, which features the integration of renewable energy sources and buffered storage systems, performing the new concept of smart grid system. Simulations of the power converters and storage systems, working as power devices of recharging station architecture, are implemented in the Matlab-Simulink environment with models of each subcomponent provided by the Sim-Power-System tool. The reported simulations are mainly devoted to verify the design criteria of the architecture scheme and the control strategies of the power fluxes related to power converters. The advantages and convenience in terms of power quality and requirementsfrom the main grid are shown, also during the EV fastcharging operations. Finally, the resulted recharging times are evaluated as comparable to the fuelling times generally taken by traditional oil based vehicles.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/iccep.2013.6586987&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/iccep.2013.6586987&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2012 ItalyPublisher:IEEE Authors: Diego Iannuzzi; Clemente Capasso; Ottorino Veneri; L. Ferraro;This paper presents an overview of issues and technologies related to the proper design of charging infrastructures for road electric vehicles. The analysis is carried out taking into account that the recharging stations of electric vehicles might be integrated in smart grids, which interconnect the main grid with distributed power plants, different kinds of renewable energy sources, stationary electrical storage systems and electric loads. The study is introduced by an analysis of the main characteristics concerning different kinds of storage systems to be used for stationary and on-board applications. Then, different charging devices, modes and architectures are presented and described showing their characteristics and potentialities. DC and AC configurations of charging stations are compared in terms of the issues related to their impact on the main grid and the design of their main components. Specific attention was devoted also to the ultra-fast DC architecture, which appears a possible solution to positively affect a wide spread of plug-in hybrid and full electric road vehicles.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/esars.2012.6387434&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/esars.2012.6387434&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Report 2018 ItalyAuthors: Elisabetta Punta; Sabato D'Auria; Maria Staiano;Documento redatto dagli autori nell'ambito del progetto Interdipartimentale Foresight S&T internazionale del CNR costituito con protocollo AMMCNT-CNR no. 0049037 in data 14/07/2015 a firma del Presidente. Il documento è stato presentato e discusso nella riunione del CE del progetto in data 23/01/2018.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::98ca5a70d2185c827d7b7e722b075319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::98ca5a70d2185c827d7b7e722b075319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Funded by:MIURMIURAuthors: Ottorino Veneri; Clemente Capasso; Stanislao Patalano;Fleets of commercial vehicles for delivery services in urban areas constitute road transportation means which are required to run relatively short distances and to respect anti-pollution laws commonly imposed by many municipalities. For this kind of commercial applications, high efficiency and eco-friendly electric propulsion systems offer an interesting alternative to thermal engines. This paper is focused on the analysis of such solution, by presenting experimental results obtained with a ZEBRA battery based propulsion system, designed to power a specific urban unit within the category of electric commercial vehicles. A novel contribution is added to the relevant literature concerning battery based electric powertrains for road vehicles. The main novelty consists in a wide range of experimental results and performance analysis carried out with reference to the real behavior of both the whole propulsion system and each main component, when powering the commercial vehicle, on the urban part of the NEDC (New European Driving Cycle) standard driving cycle, at different slopes. The experimental results, expressed through electrical and mechanical parameters, are initially evaluated by means of a quasi-static numerical model of the electric powertrain and then experimentally verified with the support of a 1:1 scale laboratory dynamic test bench. The procedure followed and presented in this paper definitely demonstrates the good design and performance, obtained for the evaluated propulsion system, in satisfying the real energy and power requirements, specific of an urban use for delivery commercial vehicles, in terms of daily autonomy and slopes. The collections of experimental results, analyzed in the paper, represent in addition a useful set of data for simulation in order to build, verify and improve models in their outputs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.01.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 40 citations 40 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.01.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Authors: Ottorino Veneri; Clemente Capasso; Stanislao Patalano;This paper is aimed to experimentally analyse the effectiveness of a hybrid storage system, when powering a commercial vehicle for urban use. The hybrid energy storage system is composed by two ZEBRA batteries, combined with an electric double layer capacitor (EDLC) module. The integration of those storage systems is obtained by means of a bidirectional DC/DC converter, which balances the electric power fluxes between batteries and super-capacitors, depending on the driving operative conditions. Modeling and simulations are preliminarily conducted with reference to the specific case study of an electric version of the Renault Master, supplied by the above described hybrid storage system. That theoretical activity allows the optimization of rule based energy management strategies for the hybrid energy storage system, in terms of the effectiveness in reducing the negative effects of high charging/discharging currents on battery durability. Then, the experimentation of the real power train, connected to the mentioned hybrid storage system, is carried out through a 1:1 laboratory test bench, able to perform the analysed energy management strategies on standard driving cycles, representative of the urban mission of the commercial vehicle under study. The obtained experimental results, expressed through electrical and mechanical parameters in a wide range of road operative conditions, show that the super-capacitors can improve the expected battery lifespan, with values of maximum effectiveness up to 52%, for driving patterns without negative road slopes. The procedure followed and presented in this paper definitely demonstrates the good performance of the evaluated hybrid storage system, controlled by the DC/DC power converter, to reduce the negative consequences of the power peaks associated with the urban use of commercial vehicles.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 84 citations 84 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Funded by:MIURMIURAuthors: Ottorino Veneri; Clemente Capasso;This paper is aimed to analyze design criteria, setting up, control strategies and experimental tests related to a power configuration of DC micro-grid for fast charging of full electric and plug in hybrid vehicles. The proposed DC fast charging architecture is derived by an analysis comparing the main characteristics of well known architectures, mainly based on AC and DC bus, taking also into account the integration of renewable energy sources (RESs) with stationary energy storage systems and fleets of road electric/hybrid vehicles. On the base of the proposed architecture a laboratory prototype of charging station has been realized by means of a 20. kW AC/DC bidirectional grid tie converter interconnected with two different power DC/DC converters of similar rated power. In this micro-grid architecture the AC/DC converter realizes a conversion stage at 790. V DC, whereas other two converters allow either the electric vehicle battery packs to be charged or an energy storage buffer to save electric energy and support the main grid during the fast charging operations. The laboratory tests described in this paper are mainly devoted to characterize the laboratory demonstrator, in different operative conditions, such as vehicle-to-grid (V2G), charging/discharging operations of different types of storage systems and fast charging operations of road electric vehicles. Then the study of the proposed power conversion architecture is focused on the evaluation of charging/discharging power, efficiency, energy flux management and its impact on the main grid. In addition proper control strategies are evaluated and implemented, allowing the proposed architecture to follow the required operations. The obtained experimental results demonstrate real advantages in terms of charging times and power requirements from the main grid, when adopting DC buffer architecture for fast charging operations. Finally, these results support the identification of a knowledge base, useful to evaluate energy management and control strategies to be adopted for DC charging stations and each one of their power converters in a smart grid scenario with distributed generation systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.04.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 90 citations 90 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.04.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1999 Australia, Australia, ItalyPublisher:Elsevier BV Ambrosino, G; Sassoli, P; BIELLI, M; Carotenuto, P; Romanazzo, M;An integrated software tool environment is presented, and a methodology is proposed for the operational support of the local authority, for analysis of the impact of transport measures in terms of network energy consumption and pollutant emissions. It is based on work done by the European Union within the save program (speci®c actions for vigorous energy eciency)ÐSlam project (supporting local authorities methodology). As background, the Slam project is described, with the principal aspects and needs of environmental and trac network management. The central section de®nes a methodology able to support technicians in recognizing the trac asset and decision makers in evaluating interventions on urban transport infrastructures or technological systems. The role of the di€erent models and their interactions with the transport telematics services currently active on the Florence (Italy) network is discussed. Finally, the procedure for calculating the trac impacts on energy consumption is described with the help of a test case, the evaluation of a dedicated bus corridor in Florence. # 1999 Published by Elsevier Science Ltd. All rights reserved.
CNR ExploRA arrow_drop_down Transportation Research Part D Transport and EnvironmentArticle . 1999 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefTransportation Research Part D Transport and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s1361-9209(98)00014-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Transportation Research Part D Transport and EnvironmentArticle . 1999 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefTransportation Research Part D Transport and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s1361-9209(98)00014-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2018 ItalyAuthors: Capasso, Clemente; Veneri, Ottorino; Assante, Dario;This paper deals with the use of laboratory test benches as a novel platform for educational purposes. In this regard, some laboratory facilities of National Research Council of Italy Istituto Motori (in Naples) are analyzed as case study of an experimental learning platform for engineers and operators in the field of Internet of Energy (IoE). In particular, these facilities are devoted to study the main components of a smart grid, with particular attention on electric power-trains, energy storage systems, renewable energy sources and fast charging architectures for electric vehicles. The laboratory tools can be locally and remotely controlled by each learner, involved in training courses based on this platform, through acquisition and control devices, which can be managed by means of programmable software interfaces. In this way, the proposed learning platform represents a novel educational instrument to train new professional profiles, with particular skills on ICT technologies, software programming and hardware management for IoE applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::495ea33f728bdb980eff1bd19aa3431b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::495ea33f728bdb980eff1bd19aa3431b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Elsevier BV Authors: Diego Iannuzzi; Clemente Capasso; Ottorino Veneri;This paper is aimed to present an experimental criterion that allows researchers and designers to evaluate the performance of DC micro-grids dedicated to charging operations of full EV. The laboratory methodology is explained through tests on a demonstrator of power architecture, specifically designed as simplified case study of a DC charging station for fully-electrified low-power two-wheeler, such as: electric scooters and bikes. This experimental prototype is composed by a 20. kW AC/DC bidirectional grid-tied converter, which realizes the DC conversion stage, and two DC/DC power converters, interconnected with the micro-grid through a DC bus. The power architecture provides on one hand the charging operations of electric two-wheeler battery packs and on the other hand the integration of the micro-grid with an ES buffer, which has the main function of supporting the main grid while an electric vehicle is on charge. The performance of the considered architecture is characterized and analyzed in different operative conditions, through a specific management of the energy fluxes. The laboratory tests evaluate efficiency, charging times and impact on the main grid, with specific reference to the DC charging operations of electric scooters. The obtained experimental results show the advantages of adopting the DC buffer architecture, compared with an AC commercial battery charger, considered as reference in this work. Finally, the numerical data of this paper, related to the single power components and to the experimental results evaluated for the whole demonstrator, effectively support the lack of knowledge in the literature about charging stations for EVs. In fact, these pieces of information, based on experimental tests, are expected to support the building of simulation models and the identification of the best energy management and control strategies to be adopted in a smart-grid scenario, characterized by distributed generation systems including renewable energy sources.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.03.138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.03.138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2013 ItalyAuthors: Capasso C.; Veneri O.;This paper deals with the design criteria, setting up and experimental tests concerning an architecture of DC micro-grid for fast recharging stations of road full electric and hybrid vehicles. The proposed DC fast charging architecture was conceived as the best solution coming from a comparative analysis among well known different architectures, mainly based on AC and DC bus. This analysis evaluated the impact on the main grid, efficiency and charging/discharging power when recharging different kinds of battery packs from real vehicles. Then, a laboratory recharging station was built by means of a 20 kW AC/DC bidirectional grid tie converter interconnected with two different high power DC/DC converters. Through this architecture, the first converter realizes a DC conversion stage at 800 V, whereas the other two converters allow the electric vehicles battery packs to be recharge and a storage buffer to save electric energy when required. Laboratory tests, described in this paper, were mainly devoted to characterize the recharging station in different operative conditions, such as island and vehicle-to-grid (V2G) operation mode, and connecting different types of storage systems to be recharged through the DC fast charging station. The experimental results allowed the identification of energy management and control strategies of each converter and whole recharging station, in order to optimize the energy losses of the power conversion and recharging times, taking into account its interaction with main grid, renewable energy sources, energy storage systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::368d2c4f57b2aef3134f38f0a0e2c0d1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::368d2c4f57b2aef3134f38f0a0e2c0d1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2013 ItalyPublisher:IEEE Authors: A. Del Pizzo; Ottorino Veneri; Clemente Capasso; L. Ferraro;This paper is focused on the design criteria of the power conversion systems operating within ultra-fast charging stations for electric vehicles. The proposed architecture is based on a DC bus, which features the integration of renewable energy sources and buffered storage systems, performing the new concept of smart grid system. Simulations of the power converters and storage systems, working as power devices of recharging station architecture, are implemented in the Matlab-Simulink environment with models of each subcomponent provided by the Sim-Power-System tool. The reported simulations are mainly devoted to verify the design criteria of the architecture scheme and the control strategies of the power fluxes related to power converters. The advantages and convenience in terms of power quality and requirementsfrom the main grid are shown, also during the EV fastcharging operations. Finally, the resulted recharging times are evaluated as comparable to the fuelling times generally taken by traditional oil based vehicles.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/iccep.2013.6586987&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/iccep.2013.6586987&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2012 ItalyPublisher:IEEE Authors: Diego Iannuzzi; Clemente Capasso; Ottorino Veneri; L. Ferraro;This paper presents an overview of issues and technologies related to the proper design of charging infrastructures for road electric vehicles. The analysis is carried out taking into account that the recharging stations of electric vehicles might be integrated in smart grids, which interconnect the main grid with distributed power plants, different kinds of renewable energy sources, stationary electrical storage systems and electric loads. The study is introduced by an analysis of the main characteristics concerning different kinds of storage systems to be used for stationary and on-board applications. Then, different charging devices, modes and architectures are presented and described showing their characteristics and potentialities. DC and AC configurations of charging stations are compared in terms of the issues related to their impact on the main grid and the design of their main components. Specific attention was devoted also to the ultra-fast DC architecture, which appears a possible solution to positively affect a wide spread of plug-in hybrid and full electric road vehicles.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/esars.2012.6387434&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/esars.2012.6387434&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu