- home
- Search
- Energy Research
- Closed Access
- 15. Life on land
- CA
- IN
- Energy Research
- Closed Access
- 15. Life on land
- CA
- IN
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Springer Science and Business Media LLC Authors: Buryan Petr;The article contains laboratory data comparing the rate of gasification of five types of woody plants—beech, oak, willow, poplar and rose. The gasification rate was determined thermogravimetrically. Carbon dioxide and steam were used as gasification gases. Willow wood was the most gasifiable, whereas rose wood the least.
Journal of Thermal A... arrow_drop_down Journal of Thermal Analysis and CalorimetryArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10973-014-3914-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Thermal A... arrow_drop_down Journal of Thermal Analysis and CalorimetryArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10973-014-3914-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2016 SwitzerlandPublisher:Elsevier BV Authors: Raveendran, Sindhu;Gnansounou, Edgard;
Binod, Parameswaran;Gnansounou, Edgard
Gnansounou, Edgard in OpenAIREPandey, Ashok;
Pandey, Ashok
Pandey, Ashok in OpenAIREAbstract Sugarcane is a major crop cultivated globally and the residue left over after the crop harvest and extraction of juice is a good biomass source that can be used for the production of several useful chemicals. The sugarcane bagasse is an excellent substrate for the production of various biochemicals and enzymes through fermentation. Now major interest is focused on the utilization of these residue for biofuel production. The sugarcane crop residue is rich in cellulose and hemicellulose, hence it can be used for the production of bioethanol and other liquid transportation fuels. The present review gives a detailed account of the availability of sugarcane residue and various commercially important products that can be produced from this residue. It also provides recent developments in R&D on the bioconversion of sugarcane crop residue for value added products.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2016.02.057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 186 citations 186 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2016.02.057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Abstract Natural resources exist independent of human intervention. Although these interventions can and do affect the balance between ecological and biological diversity conditions these resources support, and their use to promote economic development. Currently, the unsustainable use of these resources threatens this balance, calling for more sustainable patterns of natural resource use and conservation. The primary responsibility for ensuring the proper balance lies with governments, leading to various policies and programs to preserve natural resources. The ultimate goal is to make the masses aware of natural assets’ importance and encourage their sustainable use. To successfully implement, however, these government practices require public communication and participation, and the full consideration of public opinion at various levels of governance. A predictive analytics framework is proposed for understanding public opinion on government policies to improve sustainable water governance. An integrated policy initiative to balance water resources use and conservation launched by the Indian government served as a test case for applying the framework in an attempt to accurately classify the opinion polarity related to the policy. The conventional feature extraction is applied to pre-processed datasets to extract the relevant features. Subsequently, swarm-based feature selection is applied to filter out optimal features. Lastly, opinion mining and textual analysis are performed to determine the most relevant water management factors that need immediate attention. The proposed framework serves as a policy evaluation strategy in the water management domain. The paper closes with a discussion of the general applicability of the proposed framework.
Sustainable Computin... arrow_drop_down Sustainable Computing Informatics and SystemsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.suscom.2021.100604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Computin... arrow_drop_down Sustainable Computing Informatics and SystemsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.suscom.2021.100604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:Elsevier BV Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP140100323Authors: Hasintha Wijesekara;Nanthi S. Bolan;
Ramesh Thangavel; Balaji Seshadri; +5 AuthorsNanthi S. Bolan
Nanthi S. Bolan in OpenAIREHasintha Wijesekara;Nanthi S. Bolan;
Ramesh Thangavel; Balaji Seshadri; Aravind Surapaneni; Christopher Saint; Chris Hetherington; Peter Matthews;Nanthi S. Bolan
Nanthi S. Bolan in OpenAIREMeththika Vithanage;
Meththika Vithanage
Meththika Vithanage in OpenAIREA field study was conducted on two texturally different soils to determine the influences of biosolids application on selected soil chemical properties and carbon dioxide fluxes. Two sites, located in Manildra (clay loam) and Grenfell (sandy loam), in Australia, were treated at a single level of 70 Mg ha-1 biosolids. Soil samples were analyzed for SOC fractions, including total organic carbon (TOC), labile, and non-labile carbon contents. The natural abundances of soil δ13C and δ15N were measured as isotopic tracers to fingerprint carbon derived from biosolids. An automated soil respirometer was used to measure in-situ diurnal CO2 fluxes, soil moisture, and temperature. Application of biosolids increased the surface (0-15 cm) soil TOC by > 45% at both sites, which was attributed to the direct contribution from residual carbon in the biosolids and also from the increased biomass production. At both sites application of biosolids increased the non-labile carbon fraction that is stable against microbial decomposition, which indicated the soil carbon sequestration potential of biosolids. Soils amended with biosolids showed depleted δ13C, and enriched δ15N indicating the accumulation of biosolids residual carbon in soils. The in-situ respirometer data demonstrated enhanced CO2 fluxes at the sites treated with biosolids, indicating limited carbon sequestration potential. However, addition of biosolids on both the clay loam and sandy loam soils found to be effective in building SOC than reducing it. Soil temperature and CO2 fluxes, indicating that temperature was more important for microbial degradation of carbon in biosolids than soil moisture.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2017.09.090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2017.09.090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors:Narayan Kumar Shrestha;
Narayan Kumar Shrestha
Narayan Kumar Shrestha in OpenAIREJunye Wang;
Junye Wang
Junye Wang in OpenAIREpmid: 29709836
An ecosystem in a cold climate river basin is vulnerable to the effects of climate change affecting permafrost thaw and glacier retreat. We currently lack sufficient data and information if and how hydrological processes such as glacier retreat, snowmelt and freezing-thawing affect sediment and nutrient runoff and transport, as well as N2O emissions in cold climate river basins. As such, we have implemented well-established, semi-empirical equations of nitrification and denitrification within the Soil and Water Assessment Tool (SWAT), which correlate the emissions with water, sediment and nutrients. We have tested this implementation to simulate emission dynamics at three sites on the Canadian prairies. We then regionalized the optimized parameters to a SWAT model of the Athabasca River Basin (ARB), Canada, calibrated and validated for streamflow, sediment and water quality. In the base period (1990-2005), agricultural areas (2662 gN/ha/yr) constituted emission hot-spots. The spring season in agricultural areas and summer season in forest areas, constituted emission hot-moments. We found that warmer conditions (+13% to +106%) would have a greater influence on emissions than wetter conditions (-19% to +13%), and that the combined effect of wetter and warmer conditions would be more offsetting than synergetic. Our results imply that the spatiotemporal variability of N2O emissions will depend strongly on soil water changes caused by permafrost thaw. Early snow freshet leads to spatial variability of soil erosion and nutrient runoff, as well as increases of emissions in winter and decreases in spring. Our simulations suggest crop residue management may reduce emissions by 34%, but with the mixed results reported in the literature and the soil and hydrology problems associated with stover removal more research is necessary. This modelling tool can be used to refine bottom-up emission estimations at river basin scale, test plausible management scenarios, and assess climate change impacts including climate feedback.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2018.04.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2018.04.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Authors:Elizabeth T. Borer;
Elizabeth T. Borer
Elizabeth T. Borer in OpenAIRERachel E. Paseka;
Rachel E. Paseka
Rachel E. Paseka in OpenAIREAngela Peace;
Angela Peace
Angela Peace in OpenAIRELale Asik;
+7 AuthorsLale Asik
Lale Asik in OpenAIREElizabeth T. Borer;
Elizabeth T. Borer
Elizabeth T. Borer in OpenAIRERachel E. Paseka;
Rachel E. Paseka
Rachel E. Paseka in OpenAIREAngela Peace;
Angela Peace
Angela Peace in OpenAIRELale Asik;
Lale Asik
Lale Asik in OpenAIRERebecca Everett;
Rebecca Everett
Rebecca Everett in OpenAIREThijs Frenken;
Thijs Frenken
Thijs Frenken in OpenAIREAngélica L. González;
Angélica L. González
Angélica L. González in OpenAIREAlexander T. Strauss;
Alexander T. Strauss
Alexander T. Strauss in OpenAIREDedmer B. Van de Waal;
Dedmer B. Van de Waal
Dedmer B. Van de Waal in OpenAIRELauren A. White;
Lauren A. White
Lauren A. White in OpenAIREEric W. Seabloom;
Eric W. Seabloom
Eric W. Seabloom in OpenAIREdoi: 10.1002/ecm.1510
AbstractAutotrophs play an essential role in the cycling of carbon and nutrients, yet disease‐ecosystem relationships are often overlooked in these dynamics. Importantly, the availability of elemental nutrients like nitrogen and phosphorus impacts infectious disease in autotrophs, and disease can induce reciprocal effects on ecosystem nutrient dynamics. Relationships linking infectious disease with ecosystem nutrient dynamics are bidirectional, though the interdependence of these processes has received little attention. We introduce disease‐mediated nutrient dynamics (DND) as a framework to describe the multiple, concurrent pathways linking elemental cycles with infectious disease. We illustrate the impact of disease–ecosystem feedback loops on both disease and ecosystem nutrient dynamics using a simple mathematical model, combining approaches from classical ecological (logistic and Droop growth) and epidemiological (susceptible and infected compartments) theory. Our model incorporates the effects of nutrient availability on the growth rates of susceptible and infected autotroph hosts and tracks the return of nutrients to the environment following host death. While focused on autotroph hosts here, the DND framework is generalizable to higher trophic levels. Our results illustrate the surprisingly complex dynamics of host populations, infection patterns, and ecosystem nutrient cycling that can arise from even a relatively simple feedback between disease and nutrients. Feedback loops in disease‐mediated nutrient dynamics arise via effects of infection and nutrient supply on host stoichiometry and population size. Our model illustrates how host growth rate, defense, and tissue chemistry can impact the dynamics of disease–ecosystem relationships. We use the model to motivate a review of empirical examples from autotroph–pathogen systems in aquatic and terrestrial environments, demonstrating the key role of nutrient–disease and disease–nutrient relationships in real systems. By assessing existing evidence and uncovering data gaps and apparent mismatches between model predictions and the dynamics of empirical systems, we highlight priorities for future research intended to narrow the persistent disciplinary gap between disease and ecosystem ecology. Future empirical and theoretical work explicitly examining the dynamic linkages between disease and ecosystem ecology will inform fundamental understanding for each discipline and will better position the field of ecology to predict the dynamics of disease and elemental cycles in the context of global change.
Ecological Monograph... arrow_drop_down Ecological MonographsArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecm.1510&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ecological Monograph... arrow_drop_down Ecological MonographsArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecm.1510&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Authors: S K, Barik; Mukunda Dev, Behera; D, Adhikari;pmid: 36219360
Citrus is an important horticultural crop of India and is often prone to diseases, particularly under increased temperature scenarios. For developing disease-resistant Citrus varieties, conservation of wild relatives is extremely important. However, our knowledge on temperature tolerance of these wild relatives of Citrus to varied climate change scenarios is extremely limited. Therefore, we determined the climatic niche of six wild relatives of cultivated Citrus species (C. indica Tanaka, C. karna Rafin., C. latipes (Swingle) Tanaka, C. macroptera Montrouz., C. medica L., and C. sinensis (L.) Osbeck.) and identified the geographical areas in India that would remain climatically stable in future through ecological niche modeling (ENM). Raster data on 19 bioclimatic variables with a resolution of 0.04° were used to generate niche models for each Citrus species that delineated their potential distribution areas. Future species distribution predictions for the year 2050 were made using the climate change scenarios from the most appropriate climate models, i.e., IPSL-CM5A-LR and NIMR-HADGEM2-AO with four Representative Concentration Pathways (RCPs). Ensemble of current and future projections was used to identify climatically stable areas for each species. Precipitation-related bioclimatic variables were the key climatic determinants for the modeled distribution pattern. The consensus of current and future projections suggests that most areas with stable climates for the species in the future would be available in the northeastern states of Arunachal Pradesh, Meghalaya, Mizoram, and Tripura. Efforts for in situ conservation and establishment of germplasm banks and citrus orchards may be encouraged in these identified areas.
Environmental Monito... arrow_drop_down Environmental Monitoring and AssessmentArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10661-022-10556-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Monito... arrow_drop_down Environmental Monitoring and AssessmentArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10661-022-10556-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1979Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: F. Dawalibi; Dinkar Mukhedkar;Detailed analysis of ground rods and their influence on horizontal ground conductors, such as those forming grounding grids, is performed assuming a two layer soil stratification. The study starts with a discussion about the adequacy of uniform and two-layer soils as equivalent models for actual soil structures. Following this, a typical ground rod is analysed, while it is progressively associated with other ground rods, and ultimately, with horizontal conductors. The same procedure is also applied to an horizontal conductor. The results, shown using numerous charts which can be used conveniently for practical design purposes, lead to several interesting conclusions, many of which are new or still unpublished.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power Apparatus and SystemsArticle . 1979 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpas.1979.319403&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 62 citations 62 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power Apparatus and SystemsArticle . 1979 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpas.1979.319403&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001Publisher:Elsevier BV Authors: K. Francis; Piramanayagam Shanmughavel;pmid: 11554600
This study mainly aimed to investigate the bioproductivity and nutrient cycling processes in plantation forests of bamboo and acacia. In India, multipurpose tree (MPT) species are extensively planted to meet the increasing demand for fuel and industrial wood. The bioproductivity studies of bamboo showed that the total biomass increased with age (2.2 t/ha/year 1) up to six years (297.8 t/ha/year 6) and then decreased (15.6 t/ha/year 10). With acacia, the total biomass increased from 1.8 t/ha/(year 1) to 5.0 t/ha/ (year 3) and 10.9 t/ha/(year 5). In general the biomass increased with increase of diameter and height. Nutrient cycling in the plantation on an annual basis was worked out. A complete harvest of bamboo in 6 years removes 2341 kg/ha of nitrogen, 22 kg/ha of phosphorus, 2,653 kg/ha, of potassium, 1,211 kg/ha of calcium and 1,356 kg/ha of magnesium. A total harvest of above ground biomass of acacia in 3 years removes (kg/ha) 91.74 N, 2.53 P, 73.41 K, 110.45 Ca, 14.06 Mg, and in 4 years removes (kg/ha) 227.47 N, 7.34 P, 181.04 K, 284.15 Ca, and 38.89 Mg.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0960-8524(01)00060-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0960-8524(01)00060-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors:Takamitsu Mamashita;
Takamitsu Mamashita
Takamitsu Mamashita in OpenAIREGuy R. Larocque;
Annie DesRochers; Jean Beaulieu; +4 AuthorsGuy R. Larocque
Guy R. Larocque in OpenAIRETakamitsu Mamashita;
Takamitsu Mamashita
Takamitsu Mamashita in OpenAIREGuy R. Larocque;
Annie DesRochers; Jean Beaulieu;Guy R. Larocque
Guy R. Larocque in OpenAIREBarb R. Thomas;
Alex Mosseler; John Major; Derek Sidders;Barb R. Thomas
Barb R. Thomas in OpenAIREAbstract Morphological characteristics of poplar and willow clones were determined in order to identify main characteristics leading to superior growth under increased plant competition with low or high nitrogen (N) availability. Seven hybrid poplar ( Populus spp. including one hybrid aspen) and five willow ( Salix spp.) clones were grown under greenhouse conditions for 13 weeks at three spacings (20 × 20, 35 × 35, and 60 × 60 cm) and two N levels (20 and 200 mg kg −1 ). The decrease in spacing from 60 to 20 cm reduced leaf area by 50% but clones had similar aboveground biomass per tree under all spacings, with increasing their height per unit leaf area. More productive clones had greater leaf area (+102%), leaf area per unit plant biomass (+12%) and lower root-to-shoot ratios (−27%) compared to less productive clones. There were positive relationships between leaf area and above-ground biomass per tree for both more and less productive clones. Compared to low N level and 60 cm spacing, trees growing in high N level and 20 cm spacing reached similar root collar diameter, crown width, and leaf area values and even greater height, suggesting that an addition of N could help mitigate negative effects of tree competition.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2015.06.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2015.06.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu