Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archive ouverte UNIG...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biofuels Bioproducts and Biorefining
Article . 2009 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Present and future development in plastics from biomass

Authors: Shen, L.; Worrell, E.; Patel, M.K.;

Present and future development in plastics from biomass

Abstract

AbstractBiobased plastics have experienced fast growth in the past decade thanks to the public concerns over the environment, climate change and the depletion of fossil fuels. This perspective provides an overview of the current global market of biobased plastics, their material properties, technical substitution potential and future market (for 2020). In addition, the technology and market development of three biobased plastics, namely polylactide (PLA), biobased polyethylene (PE) and biobased epoxy resin, are discussed in detail. The emerging biobased plastics market is still small compared to traditional biobased polymers and biomaterials. The global capacity of the emerging biobased plastics was only 0.36 million tonnes in 2007. However, the market grew strongly between 2003 and 2007 (approx. 40% per year). The technical substitution potential of biobased plastics replacing petrochemical plastics is estimated at 90%, demonstrating the enormous potential of biobased plastics. Global capacity of biobased plastics is expected to reach 3.45 million metric tonnes in 2020. Starch plastics, PLA, biobased PE, polyhydroxyalkanoates (PHA) and biobased epoxy resin are expected to be the major types of biobased plastics in the future. Copyright © 2009 Society of Chemical Industry and John Wiley & Sons, Ltd

Countries
Switzerland, Netherlands
Related Organizations
Keywords

Biopolymer, Milieukunde, Biobased PE, Epoxy resins, market projection, Biobased plastics, Production, Material property, Scheikunde, material property, epoxy resin, Biopolymers, biopolymer, SDG 13 - Climate Action, PLA, Epoxy resin, biobased PE, production, Market projection

Powered by OpenAIRE graph
Found an issue? Give us feedback