
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
From cooperation to combat: adverse effect of thermal stress in a symbiotic coral-crustacean community

pmid: 24343842
From cooperation to combat: adverse effect of thermal stress in a symbiotic coral-crustacean community
Although mutualisms are ubiquitous in nature, our understanding of the potential impacts of climate change on these important ecological interactions is deficient. Here, we report on a thermal stress-related shift from cooperation to antagonism between members of a mutualistic coral-dwelling community. Increased mortality of coral-defending crustacean symbionts Trapezia cymodoce (coral crab) and Alpheus lottini (snapping shrimp) was observed in response to experimentally elevated temperatures and reduced coral-host (Pocillopora damicornis) condition. However, strong differential numerical effects occurred among crustaceans as a function of species and sex, with shrimp (75%), and female crabs (55%), exhibiting the fastest and greatest declines in numbers. These declines were due to forceful eviction from the coral-host by male crabs. Furthermore, surviving female crabs were impacted by a dramatic decline (85%) in egg production, which could have deleterious consequences for population sustainability. Our results suggest that elevated temperature switches the fundamental nature of this interaction from cooperation to competition, leading to asymmetrical effects on species and/or sexes. Our study illustrates the importance of evaluating not only individual responses to climate change, but also potentially fragile interactions within and among susceptible species.
- James Cook University Australia
- James Cook University Australia
- Commonwealth Scientific and Industrial Research Organisation Australia
Male, 570, Climate Change, Population Dynamics, 590, Australia, Temperature, Anthozoa, Fertility, Stress, Physiological, Decapoda, Animals, Female, Symbiosis
Male, 570, Climate Change, Population Dynamics, 590, Australia, Temperature, Anthozoa, Fertility, Stress, Physiological, Decapoda, Animals, Female, Symbiosis
1 Research products, page 1 of 1
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).18 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
