Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao World Journal of Mic...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
World Journal of Microbiology and Biotechnology
Article . 2016 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Dual symbiosis between Piriformospora indica and Azotobacter chroococcum enhances the artemisinin content in Artemisia annua L.

Authors: Ajit Varma; orcid Monika Arora;
Monika Arora
ORCID
Harvested from ORCID Public Data File

Monika Arora in OpenAIRE
Devendra Kumar Choudhary; orcid Malik Zainul Abdin;
Malik Zainul Abdin
ORCID
Harvested from ORCID Public Data File

Malik Zainul Abdin in OpenAIRE
Parul Saxena;

Dual symbiosis between Piriformospora indica and Azotobacter chroococcum enhances the artemisinin content in Artemisia annua L.

Abstract

At present, Artemisia annua L. is the major source of artemisinin production. To control the outbreaks of malaria, artemisinin combination therapies (ACTs) are recommended, and hence an ample amount of artemisinin is required for ACTs manufacture to save millions of lives. The low yield of this antimalarial drug in A. annua L. plants (0.01-1.1%) ensues its short supply and high cost, thus making it a topic of scrutiny worldwide. In this study, the effects of root endophyte, Piriformospora indica strain DSM 11827 and nitrogen fixing bacterium, Azotobacter chroococcum strain W-5, either singly and/or in combination for artemisinin production in A. annua L. plants have been studied under poly house conditions. The plant growth was monitored by measuring parameters like height of plant, total dry weight and leaf yield with an increase of 63.51, 52.61 and 79.70% respectively, for treatment with dual biological consortium, as compared to that of control plants. This significant improvement in biomass was associated with higher total chlorophyll content (59.29%) and enhanced nutrition (especially nitrogen and phosphorus, 55.75 and 86.21% respectively). The concentration of artemisinin along with expression patterns of artemisinin biosynthesis genes were appreciably higher in dual treatment, which showed positive correlation. The study suggested the potential use of the consortium P. indica strain DSM 11827 and A. chroococcum strain W-5 in A. annua L. plants for increased overall productivity and sustainable agriculture.

Keywords

Chlorophyll, Nitrogen, Basidiomycota, Phosphorus, Artemisia annua, Real-Time Polymerase Chain Reaction, Artemisinins, Biosynthetic Pathways, Azotobacter, Nitrogen Fixation, RNA, Biomass, Symbiosis

Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
55
Top 10%
Top 10%
Top 10%
bronze
Upload OA version
Are you the author? Do you have the OA version of this publication?