Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Agricultural and For...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Agricultural and Forest Meteorology
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Agricultural and Forest Meteorology
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Improved models of the effects of winter chilling on blackcurrant (Ribes nigrum L.) show cultivar specific sensitivity to warm winters

Authors: Katharine Preedy; Rex Brennan; Hamlyn Jones; Sandra Gordon;

Improved models of the effects of winter chilling on blackcurrant (Ribes nigrum L.) show cultivar specific sensitivity to warm winters

Abstract

Abstract Sufficient chilling in winter is essential for many perennial crops to start growing in spring and to produce good yields. Using blackcurrants as an example we have developed improved models which can help identify varieties resilient to the variable winters expected as the climate warms. Controlled temperature experiments were used to calibrate 3 proposed models of chilling accumulation requirements for a number of commercial blackcurrant cultivars. The first model assumed a linear relationship between bud break and chilling accumulation, the second a quadratic relationship which allows for the possibility of over-chilling and the third, an asymmetric quadratic relationship in which the maximum achievable effectiveness is temperature dependent. The models were then applied to data on selected cultivars gathered from blackcurrant growers across the United Kingdom and the third model was found to provide the best fit for the data, suggesting that long warm winters do not have the same effect as short cold winters in terms of the satisfaction of chilling requirement. Further, the degree to which temperature affects maximum bud break varies by cultivar. We discuss the potential effects of differing timing of chill on the applicability of the models presented.

Country
United Kingdom
Related Organizations
Keywords

Bud break, /dk/atira/pure/subjectarea/asjc/2300/2306, name=Global and Planetary Change, /dk/atira/pure/subjectarea/asjc/1100/1102, Chill models, 630, name=Agronomy and Crop Science, Ribes, name=Atmospheric Science, Climate change, Dormancy, name=Forestry, /dk/atira/pure/subjectarea/asjc/1900/1902, Winter chilling, /dk/atira/pure/subjectarea/asjc/1100/1107

Powered by OpenAIRE graph
Found an issue? Give us feedback