
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
An integrated eco-evolutionary framework to predict population-level responses of climate-sensitive pathogens

pmid: 36739640
It is critical to gain insight into how climate change impacts evolutionary responses within climate-sensitive pathogen populations, such as increased resilience, opportunistic responses and the emergence of dominant variants from highly variable genomic backgrounds and subsequent global dispersal. This review proposes a framework to support such analysis, by combining genomic evolutionary analysis with climate time-series data in a novel spatiotemporal dataframe for use within machine learning applications, to understand past and future evolutionary pathogen responses to climate change. Recommendations are presented to increase the feasibility of interdisciplinary applications, including the importance of robust spatiotemporal metadata accompanying genome submission to databases. Such workflows will inform accessible public health tools and early-warning systems, to aid decision-making and mitigate future human health threats.
- National Oceanography Centre United Kingdom
- Autonomous University of Barcelona Spain
- Centre for Environment, Fisheries and Aquaculture Science United Kingdom
- "UNIVERSITAT AUTONOMA DE BARCELONA Spain
- University of Southampton United Kingdom
570, Databases, Factual, Climate Change, 610, Biological Evolution, 333, Humans
570, Databases, Factual, Climate Change, 610, Biological Evolution, 333, Humans
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
