
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Mineralization and nitrification: Archaea dominate ammonia-oxidising communities in grassland soils

Mineralization and nitrification: Archaea dominate ammonia-oxidising communities in grassland soils
Abstract In grasslands, N mineralization and nitrification are important processes and are controlled by several factors, including the in situ microbial community composition. Nitrification involves ammonia oxidising archaea (AOA) and bacteria (AOB) and although AOA and AOB co-exist in soils, they respond differently to environmental characteristics and there is evidence of AOA/AOB niche differentiation. Here, we investigated temporal variation in N mineralization and nitrification rates, together with bacterial, archaeal and ammonia-oxidiser communities in grassland soils, on different geologies: clay, Greensand and Chalk. Across geologies, N mineralization and nitrification rates were slower in the autumn than the rest of the year. Turnover times for soil ammonium pools were
- Queen Mary University of London United Kingdom
- Natural Environment Research Council United Kingdom
- University of Essex United Kingdom
570, 550, plant-soil biogeochemistry, 910, sustainability, modelling, land-use change, Agriculture and Soil Science, agriculture
570, 550, plant-soil biogeochemistry, 910, sustainability, modelling, land-use change, Agriculture and Soil Science, agriculture
2 Research products, page 1 of 1
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).46 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
