Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Science & Technology
Article . 2017
License: taverne
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Science & Technology
Article . 2016 . Peer-reviewed
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Profiling the Serum Albumin Cys34 Adductome of Solid Fuel Users in Xuanwei and Fuyuan, China

Authors: Sixin S. Lu; Hasmik Grigoryan; William M. B. Edmands; Wei Hu; Anthony T. Iavarone; Alan Hubbard; Nathaniel Rothman; +3 Authors

Profiling the Serum Albumin Cys34 Adductome of Solid Fuel Users in Xuanwei and Fuyuan, China

Abstract

Xuanwei and Fuyuan counties in China have the highest lung cancer rates in the world due to household air pollution from combustion of smoky coal for cooking and heating. To discover potential biomarkers of indoor combustion products, we profiled adducts at the Cys34 locus of human serum albumin (HSA) in 29 nonsmoking Xuanwei and Fuyuan females who used smoky coal, smokeless coal, or wood and 10 local controls who used electricity or gas fuel. Our untargeted "adductomics" method detected 50 tryptic peptides of HSA, containing Cys34 and prominent post-translational modifications. Putative adducts included Cys34 oxidation products, mixed disulfides, rearrangements, and truncations. The most significant differences in adduct levels across fuel types were observed for S-glutathione (S-GSH) and S-γ-glutamylcysteine (S-γ-GluCys), both of which were present at lower levels in subjects exposed to combustion products than in controls. After adjustment for age and personal measurements of airborne benzo(a)pyrene, the largest reductions in levels of S-GSH and S-γ-GluCys relative to controls were observed for users of smoky coal, compared to users of smokeless coal and wood. These results point to possible depletion of GSH, an essential antioxidant, and its precursor γ-GluCys in nonsmoking females exposed to indoor-combustion products in Xuanwei and Fuyuan, China.

Countries
Netherlands, United States
Keywords

China, Lung Neoplasms, DNA Adducts, Coal, SDG 3 - Good Health and Well-being, Air Pollution, Air Pollution, Indoor, Smoke, Taverne, Humans, Female, Indoor, Cooking, Biomarkers, Serum Albumin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 10%
Green
hybrid