
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Warming enhances old organic carbon decomposition through altering functional microbial communities

Abstract Soil organic matter (SOM) stocks contain nearly three times as much carbon (C) as the atmosphere and changes in soil C stocks may have a major impact on future atmospheric carbon dioxide concentrations and climate. Over the past two decades, much research has been devoted to examining the influence of warming on SOM decomposition in topsoil. Most SOM, however, is old and stored in subsoil. The fate of subsoil SOM under future warming remains highly uncertain. Here, by combining a long-term field warming experiment and a meta-analysis study, we showed that warming significantly increased SOM decomposition in subsoil. We also showed that a decade of warming promoted decomposition of subsoil SOM with turnover times of decades to millennia in a tall grass prairie and this effect was largely associated with shifts in the functional gene structure of microbial communities. By coupling stable isotope probing with metagenomics, we found that microbial communities in warmed soils possessed a higher relative abundance of key functional genes involved in the degradation of organic materials with varying recalcitrance than those in control soils. These findings suggest warming may considerably alter the stability of the vast pool of old SOM in subsoil, contributing to the long-term positive feedback between the C cycle and climate.
- Lawrence Berkeley National Laboratory United States
- Zhejiang Ocean University China (People's Republic of)
- Tsinghua University China (People's Republic of)
- Georgia Institute of Technology United States
- University of Alaska Fairbanks United States
Technology, Hot Temperature, 550, Climate Change, Microbiology, 630, Soil, Soil Microbiology, Ecology, Bacteria, Biological Sciences, Carbon, Climate Action, Environmental sciences, Biological sciences, Original Article, Metagenomics, Environmental Sciences
Technology, Hot Temperature, 550, Climate Change, Microbiology, 630, Soil, Soil Microbiology, Ecology, Bacteria, Biological Sciences, Carbon, Climate Action, Environmental sciences, Biological sciences, Original Article, Metagenomics, Environmental Sciences
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).167 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
