Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Communications Earth...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Communications Earth & Environment
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Communications Earth & Environment
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL INRAE
Article . 2021
Data sources: HAL INRAE
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ReDivia
Article . 2021
License: CC BY NC ND
Data sources: ReDivia
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Decision support systems halve fungicide use compared to calendar-based strategies without increasing disease risk

Authors: Lázaro, Elena; Makowski, David; Vicent, Antonio;

Decision support systems halve fungicide use compared to calendar-based strategies without increasing disease risk

Abstract

AbstractThe European Green Deal aims to reduce the use of chemical pesticides by half by 2030. Decision support systems are tools to help farmers schedule fungicide spraying based on disease risk and can reduce fungicide application frequency and overall use. However, the potential benefit of decision support systems compared to traditional calendar-based strategies has not yet been rigorously quantified. Here we synthesise 80 experiments and show that globally decision support systems can reduce fungicide treatments by at least 50% without compromising disease control. For a given fixed number of fungicide sprays, decision support systems were as effective as calendar-based programs in reducing disease incidence. When the number of sprays was halved, the increase in disease incidence was lower for decision support system-based strategies than calendar-based strategies. Our findings suggest that decision support systems can reduce fungicide use while limiting the risk to plant health and resistance development.

Countries
Spain, France
Keywords

MODELS, [SDV.SA.AGRO]Life Sciences [q-bio]/Agricultural sciences/Agronomy, T01 Pollution, Environmental impact, PESTICIDES, [STAT.AP] Statistics [stat]/Applications [stat.AP], MANAGEMENT, GE1-350, U10 Mathematical and statistical methods, R PACKAGE, EXPOSURE, PLANT, H20 Plant diseases, METAANALYSIS, Environmental studies, Fungicides, [SDV.SA.AGRO] Life Sciences [q-bio]/Agricultural sciences/Agronomy, [STAT.AP]Statistics [stat]/Applications [stat.AP], QE1-996.5, Geology, Agriculture, 620, Environmental sciences, Sustainability, N20 Agricultural machinery and equipment, Plant sciences, decision support systems

Powered by OpenAIRE graph
Found an issue? Give us feedback