
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Plant diversity effects on soil food webs are stronger than those of elevated CO 2 and N deposition in a long-term grassland experiment

Recent metaanalyses suggest biodiversity loss affects the functioning of ecosystems to a similar extent as other global environmental change agents. However, the abundance and functioning of soil organisms have been hypothesized to be much less responsive to such changes, particularly in plant diversity, than aboveground variables, although tests of this hypothesis are extremely rare. We examined the responses of soil food webs (soil microorganisms, nematodes, microarthropods) to 13-y manipulation of multiple environmental factors that are changing at global scales—specifically plant species richness, atmospheric CO 2 , and N deposition—in a grassland experiment in Minnesota. Plant diversity was a strong driver of the structure and functioning of soil food webs through several bottom-up (resource control) effects, whereas CO 2 and N only had modest effects. We found few interactions between plant diversity and CO 2 and N, likely because of weak interactive effects of those factors on resource availability (e.g., root biomass). Plant diversity effects likely were large because high plant diversity promoted the accumulation of soil organic matter in the site’s sandy, organic matter–poor soils. Plant diversity effects were not explained by the presence of certain plant functional groups. Our results underline the prime importance of plant diversity loss cascading to soil food webs (density and diversity of soil organisms) and functions. Because the present results suggest prevailing plant diversity effects and few interactions with other global change drivers, protecting plant diversity may be of high priority to maintain the biodiversity and functioning of soils in a changing world.
- Western Sydney University Australia
- Friedrich Schiller University Jena Germany
- University of Minnesota Morris United States
- Western Sydney University Australia
- Jena University Hospital Germany
580, Food Chain, Nitrogen, Climate Change, Minnesota, Biodiversity, Carbon Dioxide, Poaceae, Soil, XXXXXX - Unknown, Linear Models, Biomass
580, Food Chain, Nitrogen, Climate Change, Minnesota, Biodiversity, Carbon Dioxide, Poaceae, Soil, XXXXXX - Unknown, Linear Models, Biomass
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).226 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
