Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Time to look forward to adapt to ocean warming

Authors: Jess Melbourne-Thomas; Jess Melbourne-Thomas; Geir Ottersen; Geir Ottersen;

Time to look forward to adapt to ocean warming

Abstract

There is growing evidence indicating that variability and extremes in conditions in the marine environment are as (or more) important as changes in the mean for determining threats to biodiversity, impacts on ecosystem services, and consequences for human systems (1⇓⇓–4). With respect to ocean temperature, long-term persistent warming has been accompanied by an increased frequency of discrete periods of extreme regional ocean warming (marine heatwaves) (5). This poses a threat to biodiversity and ecosystem services, including impacts on foundation species (corals, seagrasses, and kelps) (1, 4). The potential of human and natural systems to adapt to such changes remains unclear. In PNAS, Pershing et al. (6) show that an increasing frequency of extreme heat events—or “surprises”—is challenging autonomous modes of adaptation that rely on historical experience. The authors contrast reactive adaptation that is guided by experiences of past events with proactive adaptation based on forward-looking decision making. They use ocean ecosystems as a case study and, based on mathematical models, consider how temperature trends and the frequency of surprise (high) temperature events could impact natural and human communities under different adaptation strategies. Pershing et al. (6) define a temperature surprise as an annual mean temperature that is 2 SDs above the mean, where the … [↵][1]1To whom correspondence may be addressed. Email: geir.ottersen{at}ibv.uio.no. [1]: #xref-corresp-1-1

Keywords

Climate Change, Oceans and Seas, Temperature, Humans, Global Warming

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
hybrid