Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ FEMS Microbiology Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
FEMS Microbiology Reviews
Article . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Marine viruses and global climate change

Authors: Antonio Dell'Anno; Cinzia Corinaldesi; Roberto Danovaro; Rachel T. Noble; Jack J. Middelburg; Jed A. Fuhrman; Curtis A. Suttle;

Marine viruses and global climate change

Abstract

Sea-surface warming, sea-ice melting and related freshening, changes in circulation and mixing regimes, and ocean acidification induced by the present climate changes are modifying marine ecosystem structure and function and have the potential to alter the cycling of carbon and nutrients in surface oceans. Changing climate has direct and indirect consequences on marine viruses, including cascading effects on biogeochemical cycles, food webs, and the metabolic balance of the ocean. We discuss here a range of case studies of climate change and the potential consequences on virus function, viral assemblages and virus-host interactions. In turn, marine viruses influence directly and indirectly biogeochemical cycles, carbon sequestration capacity of the oceans and the gas exchange between the ocean surface and the atmosphere. We cannot yet predict whether the viruses will exacerbate or attenuate the magnitude of climate changes on marine ecosystems, but we provide evidence that marine viruses interact actively with the present climate change and are a key biotic component that is able to influence the oceans' feedback on climate change. Long-term and wide spatial-scale studies, and improved knowledge of host-virus dynamics in the world's oceans will permit the incorporation of the viral component into future ocean climate models and increase the accuracy of the predictions of the climate change impacts on the function of the oceans.

Keywords

Climate Change, Viruses, Seawater, Carbon, Ecosystem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    297
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 1
  • 1
    views
    Data sourceViewsDownloads
    OpenAIRE10
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
297
Top 1%
Top 10%
Top 1%
1
bronze