
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Climatic vulnerabilities and ecological preferences of soil invertebrates across biomes

AbstractUnlike plants and vertebrates, the ecological preferences, and potential vulnerabilities of soil invertebrates to environmental change, remain poorly understood in terrestrial ecosystems globally. We conducted a cross‐biome survey including 83 locations across six continents to advance our understanding of the ecological preferences and vulnerabilities of the diversity of dominant and functionally important soil invertebrate taxa, including nematodes, arachnids and rotifers. The diversity of invertebrates was analyzed through amplicon sequencing. Vegetation and climate drove the diversity and dominant taxa of soil invertebrates. Our results suggest that declines in forest cover and plant diversity, and reductions in plant production associated with increases in aridity, can result in reductions of the diversity of soil invertebrates in a drier and more managed world. We further developed global atlases of the diversity of these important soil invertebrates, which were cross‐validated using an independent database. Our study advances the current knowledge of the ecological preferences and vulnerabilities of the diversity and presence of functionally important soil invertebrates in soils from across the globe. This information is fundamental for improving and prioritizing conservation efforts of soil genetic resources and management policies.
- Spanish National Research Council Spain
- UNSW Sydney Australia
- Virginia Tech United States
- Universidad Mayor Chile
- Virginia State University United States
Nematoda, Life on Land, Rotifera, Forests, 333, diversity, Soil, XXXXXX - Unknown, Arachnida, Animals, biogeography, Ecosystem, Evolutionary Biology, Biological Sciences, soil invertebrates, Invertebrates, plant diversity, climate change, aridity
Nematoda, Life on Land, Rotifera, Forests, 333, diversity, Soil, XXXXXX - Unknown, Arachnida, Animals, biogeography, Ecosystem, Evolutionary Biology, Biological Sciences, soil invertebrates, Invertebrates, plant diversity, climate change, aridity
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).41 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
