Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CGIAR CGSpace (Consu...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Annual Review of Phytopathology
Article . 2022 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Climate Change Effects on Pathogen Emergence: Artificial Intelligence to Translate Big Data for Mitigation

Authors: Garrett, K.A.; Bebber, D.P.; Etherton, B.A.; Gold, K.M.; Plex Sulá, A.I.; Selvaraj, Michael G.;

Climate Change Effects on Pathogen Emergence: Artificial Intelligence to Translate Big Data for Mitigation

Abstract

Plant pathology has developed a wide range of concepts and tools for improving plant disease management, including models for understanding and responding to new risks from climate change. Most of these tools can be improved using new advances in artificial intelligence (AI), such as machine learning to integrate massive data sets in predictive models. There is the potential to develop automated analyses of risk that alert decision-makers, from farm managers to national plant protection organizations, to the likely need for action and provide decision support for targeting responses. We review machine-learning applications in plant pathology and synthesize ideas for the next steps to make the most of these tools in digital agriculture. Global projects, such as the proposed global surveillance system for plant disease, will be strengthened by the integration of the wide range of new data, including data from tools like remote sensors, that are used to evaluate the risk ofplant disease. There is exciting potential for the use of AI to strengthen global capacity building as well, from image analysis for disease diagnostics and associated management recommendations on farmers’ phones to future training methodologies for plant pathologists that are customized in real-time for management needs in response to the current risks. International cooperation in integrating data and models will help develop the most effective responses to new challenges from climate change.

Country
France
Keywords

mitigación del cambio climático, Big Data, inteligencia artificial, access to information, Climate Change, pathogens, Agriculture, artificial intelligence, climate change mitigation, Machine Learning, Artificial Intelligence, organismos patógenos

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Average
Top 10%
Green