Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ SLU publication data...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
European Journal of Soil Biology
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
SSRN Electronic Journal
Article . 2022 . Peer-reviewed
Data sources: Crossref
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Stable Nitrogen-Cycling Capacity in Relation to Fertilization and Intercropping in a Sub-Boreal Grassland

Authors: Honghong Li; Petri Penttinen; Jaanis Juhanson; Frederick L. Stoddard; Sara Hallin; Kristina Lindström;

Stable Nitrogen-Cycling Capacity in Relation to Fertilization and Intercropping in a Sub-Boreal Grassland

Abstract

Grasslands are important in sub-boreal climate agricultural systems and are managed with various combinations of N fertilization and plant species. Ammonia-oxidizing and denitrifying microorganisms are key players in determining the fate of nitrogen (N) and thereby also the yield in grassland systems and their impact on gaseous N losses and leaching. We established a three-year field study in southern Finland with fertilizer treatment as a main-plot factor, including organic and synthetic fertilizers and plant species and mixtures thereof as the sub-plot factor. We quantified six genes encoding key N-cycling enzymes by quantitative PCR to determine the abundance of the communities involved in N-transformation processes and also included previously published data on crop yield, soil properties and the overall bacterial community composition. With the exception of ammonia oxidizing bacteria (AOB), which were primarily affected by fertilization, the abundances of all other N-cycling communities changed over time with either an increase or decrease from summer to autumn. Differences in gene abundances between plant species treatments and in fertilizer by plant species interactions were detected mainly in the beginning of the cropping season during the first year. The nirS-type denitrifiers and nosZII nitrous oxide reducers responded more to changes in soil properties than their functional counterpart nirK and nosZI communities. Using structural equation modeling, we show that the overall microbial community composition and diversity played an important role in mediating the management effects on crop yield, genetic potential for N retention and N2O sink capacity. However, a trade-off between the genetic potential for N retention and N2O sink capacity was detected, indicating the challenges in managing grasslands in a sustainable way.ER - Grasslands are important in sub-boreal climate agricultural systems and are managed with various combinations of N fertilization and plant species. Ammonia-oxidizing and denitrifying microorganisms are key players in determining the fate of nitrogen (N) and thereby also the yield in grassland systems and their impact on gaseous N losses and leaching. We established a three-year field study in southern Finland with fertilizer treatment as a main-plot factor, including organic and synthetic fertilizers and plant species and mixtures thereof as the sub-plot factor. We quantified six genes encoding key N-cycling enzymes by quantitative PCR to determine the abundance of the communities involved in N-transformation processes and also included previously published data on crop yield, soil properties and the overall bacterial community composition. With the exception of ammonia oxidizing bacteria (AOB), which were primarily affected by fertilization, the abundances of all other N-cycling communities changed over time with either an increase or decrease from summer to autumn. Differences in gene abundances between plant species treatments and in fertilizer by plant species interactions were detected mainly in the beginning of the cropping season during the first year. The nirS-type denitrifiers and nosZII nitrous oxide reducers responded more to changes in soil properties than their functional counterpart nirK and nosZI communities. Using structural equation modeling, we show that the overall microbial community composition and diversity played an important role in mediating the management effects on crop yield, genetic potential for N retention and N2O sink capacity. However, a trade-off between the genetic potential for N retention and N2O sink capacity was detected, indicating the challenges in managing grasslands in a sustainable way.

Countries
Finland, Sweden, Finland
Related Organizations
Keywords

GENES, REDUNDANCY, ECOLOGY, Functional redundancy, ARCHAEA, MICROORGANISMS, MICROBIAL COMMUNITIES, Agricultural Science, Legume -grass intercropping, 580, 11832 Microbiology and virology, Ammonia oxidizers, DNRA, SOIL, Sustainability, ABUNDANCE, Denitrifiers, AMMONIA-OXIDIZING BACTERIA, COMPLETE NITRIFICATION

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average