
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects

El cambio climático afecta a la productividad agrícola en todo el mundo. El aumento de los precios de los productos alimenticios básicos es la indicación inicial de una drástica pérdida de rendimiento comestible, que se espera que aumente aún más debido al calentamiento global. Esta situación ha obligado a los científicos de plantas a desarrollar cultivos resistentes al cambio climático, que pueden soportar tensiones de amplio espectro como la sequía, el calor, el frío, la salinidad, las inundaciones, la inmersión y las plagas, lo que ayuda a aumentar la productividad. La genómica parece ser una herramienta prometedora para descifrar la capacidad de respuesta al estrés de las especies de cultivos con rasgos de adaptación o en parientes silvestres para identificar genes subyacentes, alelos o loci de rasgos cuantitativos. Los enfoques de fitomejoramiento molecular han demostrado ser útiles para mejorar la adaptación al estrés de las plantas de cultivo, y los avances recientes en la secuenciación de alto rendimiento y las plataformas de fenotipado han transformado el fitomejoramiento molecular en fitomejoramiento asistido por genómica (Gab). En vista de esto, la presente revisión detalla el progreso y las perspectivas de los AGP para mejorar la resiliencia al cambio climático en los cultivos, que probablemente desempeñará un papel cada vez mayor en el esfuerzo por garantizar la seguridad alimentaria mundial.
Le changement climatique affecte la productivité agricole dans le monde entier. L'augmentation des prix des produits alimentaires est l'indication initiale d'une perte drastique de rendement comestible, qui devrait encore augmenter en raison du réchauffement climatique. Cette situation a contraint les phytologues à développer des cultures résilientes au changement climatique, capables de résister à des stress à large spectre tels que la sécheresse, la chaleur, le froid, la salinité, les inondations, la submersion et les parasites, contribuant ainsi à augmenter la productivité. La génomique semble être un outil prometteur pour déchiffrer la réactivité au stress des espèces cultivées avec des traits d'adaptation ou chez les parents sauvages vers l'identification des gènes sous-jacents, des allèles ou des locus de caractères quantitatifs. Les approches de sélection moléculaire se sont révélées utiles pour améliorer l'adaptation au stress des plantes cultivées, et les progrès récents des plates-formes de séquençage et de phénotypage à haut débit ont transformé la sélection moléculaire en sélection assistée par génomique (GAB). Compte tenu de cela, le présent examen élabore les progrès et les perspectives de GAB pour améliorer la résilience au changement climatique dans les cultures, qui est susceptible de jouer un rôle de plus en plus important dans l'effort visant à assurer la sécurité alimentaire mondiale.
Climate change affects agricultural productivity worldwide. Increased prices of food commodities are the initial indication of drastic edible yield loss, which is expected to increase further due to global warming. This situation has compelled plant scientists to develop climate change-resilient crops, which can withstand broad-spectrum stresses such as drought, heat, cold, salinity, flood, submergence and pests, thus helping to deliver increased productivity. Genomics appears to be a promising tool for deciphering the stress responsiveness of crop species with adaptation traits or in wild relatives toward identifying underlying genes, alleles or quantitative trait loci. Molecular breeding approaches have proven helpful in enhancing the stress adaptation of crop plants, and recent advances in high-throughput sequencing and phenotyping platforms have transformed molecular breeding to genomics-assisted breeding (GAB). In view of this, the present review elaborates the progress and prospects of GAB for improving climate change resilience in crops, which is likely to play an ever increasing role in the effort to ensure global food security.
يؤثر تغير المناخ على الإنتاجية الزراعية في جميع أنحاء العالم. ارتفاع أسعار السلع الغذائية هو المؤشر الأولي على فقدان محصول الطعام بشكل كبير، والذي من المتوقع أن يزداد أكثر بسبب الاحترار العالمي. وقد أجبر هذا الوضع علماء النبات على تطوير محاصيل قادرة على التكيف مع تغير المناخ، والتي يمكن أن تتحمل ضغوطًا واسعة النطاق مثل الجفاف والحرارة والبرودة والملوحة والفيضانات والغمر والآفات، مما يساعد على زيادة الإنتاجية. يبدو أن علم الجينوم أداة واعدة لفك رموز استجابة الإجهاد لأنواع المحاصيل ذات سمات التكيف أو في الأقارب البرية نحو تحديد الجينات الأساسية أو الأليلات أو مواقع السمات الكمية. أثبتت مناهج التكاثر الجزيئي أنها مفيدة في تعزيز تكيف نباتات المحاصيل مع الإجهاد، وقد أدت التطورات الحديثة في منصات التسلسل والتنميط الظاهري عالية الإنتاجية إلى تحويل التكاثر الجزيئي إلى تربية بمساعدة الجينوم (GAB). وفي ضوء ذلك، يوضح هذا الاستعراض التقدم الذي أحرزه المكتب وآفاقه لتحسين القدرة على التكيف مع تغير المناخ في المحاصيل، والتي من المرجح أن تلعب دوراً متزايداً في الجهود المبذولة لضمان الأمن الغذائي العالمي.
- Japan Grassland Agriculture and Forage Seed Association Japan
- University of Missouri United States
- University of Georgia Press United States
- University of Wisconsin–Oshkosh United States
- University of California, Riverside United States
Economics, Macroeconomics, Plant Biology, Plant Science, Breeding, Crop, Gene, 630, SB1-1110, Agricultural and Biological Sciences, Natural resource economics, Stress Tolerance, 1110 Plant Science, Climate change, Psychology, Productivity, Psychological resilience, Genome, Adaptation (eye), Ecology, Global warming, Life Sciences, Agriculture, Genomics, Rice Genomics, FOS: Psychology, Genetic Mapping, climate change, Sustainability, Genetic Architecture of Quantitative Traits, Breeding; Climate change; Crop improvement; Genomics; Stress tolerance; Plant Science, Zero Hunger, Biotechnology, Crop Improvement, Climate Change, Crop improvement, 333, Biochemistry, Genetics and Molecular Biology, genomics, Genetics, Biology, 580, Mutation Breeding for Crop Improvement, stress tolerance, Plant culture, Genetics and Genomics, Food security, crop improvement, Agronomy, Climate Action, breeding, FOS: Biological sciences, Viral RNA Silencing and Plant Immunity, Molecular breeding, Psychotherapist, Neuroscience
Economics, Macroeconomics, Plant Biology, Plant Science, Breeding, Crop, Gene, 630, SB1-1110, Agricultural and Biological Sciences, Natural resource economics, Stress Tolerance, 1110 Plant Science, Climate change, Psychology, Productivity, Psychological resilience, Genome, Adaptation (eye), Ecology, Global warming, Life Sciences, Agriculture, Genomics, Rice Genomics, FOS: Psychology, Genetic Mapping, climate change, Sustainability, Genetic Architecture of Quantitative Traits, Breeding; Climate change; Crop improvement; Genomics; Stress tolerance; Plant Science, Zero Hunger, Biotechnology, Crop Improvement, Climate Change, Crop improvement, 333, Biochemistry, Genetics and Molecular Biology, genomics, Genetics, Biology, 580, Mutation Breeding for Crop Improvement, stress tolerance, Plant culture, Genetics and Genomics, Food security, crop improvement, Agronomy, Climate Action, breeding, FOS: Biological sciences, Viral RNA Silencing and Plant Immunity, Molecular breeding, Psychotherapist, Neuroscience
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).262 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
