Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2020
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Mixture of Piper Leaves Extracts and Rhizobacteria for Sustainable Plant Growth Promotion and Bio-Control of Blast Pathogen of Organic Bali Rice

Authors: Ni Luh Suriani; Dewa Ngurah Suprapta; Novizar Nazir; Ni Made Susun Parwanayoni; Anak Agung Ketut Darmadi; Desy Andya Dewi; Ni Wayan Sudatri; +7 Authors

A Mixture of Piper Leaves Extracts and Rhizobacteria for Sustainable Plant Growth Promotion and Bio-Control of Blast Pathogen of Organic Bali Rice

Abstract

Rice is a crop that is consumed as a staple food by the majority of the people in the world and therefore failure in rice crops, due to any reason, poses a severe threat of starvation. Rice blast, caused by a fungus Pyricularia oryzae, has been ranked among the most threatening plant diseases of rice and it is found wherever rice is grown. All of the rice blast disease management strategies employed so far have had limited success and rice blast has never been eliminated from rice fields. Hence, there is a need to look for the best remedy in terms of effectiveness, sustainability, and organic nature of the method. This study was aimed at determining the plant growth-promoting and fungicidal effects of a mixture of Piper caninum and Piper betle var. Nigra leaves extracts and rhizobacteria. Gas chromatography–mass spectrophotometry (GC-MS) analysis of a mixture of leaves extracts of these plants revealed the presence of new bioactive compounds such as alpha.-gurjunene, gamma.-terpinene, and ethyl 5-formyl 3-(2-ethoxycarbonyl) in a mixture of leaves extracts of P. caninum and P. betle var. Nigra. The mixture of these extracts reduced the intensity of blast disease, inhibited P. oryzae, and improved the growth, yield, and quality of Bali rice. All treatments comprising of different concentrations of a mixture of leaves extracts of P. caninum and P. betle var. Nigra plus rhizobacteria exhibited biocontrol and bioefficacy. However, a 2% concentration of a mixture of these leaves extracts with plant growth-promoting rhizobacteria (PGPR) exhibited potent inhibition of growth of P. oryzae, a significant reduction in the intensity of blast disease, and a maximum increase in growth, yield, and quality of Bali rice. In the 15th week, the intensity of blast disease decreased from 80.18% to 7.90%. The mixture of leaves extract + PGPR also improved the height of the plant, the number of tillers, number of leaves, number of grains per panicle, number of heads per panicle, and the full-grain weight per clump. Applications of various concentrations of a mixture of leaves extracts + PGPR resulted in improvement in the potential yield of rice, however, the application of 2% extracts + PGPR gave the highest potential yield of 5.61 tha−1 compared to the low yields in the control and other treatments. The high grain yield observed with the treatment was caused by the low intensity of blast disease. This treatment also strengthened the stem and prevented the drooping of the plant and improved the quality of rice grain.

Country
Malaysia
Keywords

580, Environmental effects of industries and plants, TJ807-830, TD194-195, TP Chemical technology, Renewable energy sources, Environmental sciences, bioactive substances, PGPR, GE1-350, biocontrol, <i>Pyricularia oryzae</i>, botanical fungicides

Powered by OpenAIRE graph
Found an issue? Give us feedback