
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects

doi: 10.3390/su13031140
The quest for enhancing agricultural yields due to increased pressure on food production has inevitably led to the indiscriminate use of chemical fertilizers and other agrochemicals. Biofertilizers are emerging as a suitable alternative to counteract the adverse environmental impacts exerted by synthetic agrochemicals. Biofertilizers facilitate the overall growth and yield of crops in an eco-friendly manner. They contain living or dormant microbes, which are applied to the soil or used for treating crop seeds. One of the foremost candidates in this respect is rhizobacteria. Plant growth promoting rhizobacteria (PGPR) are an important cluster of beneficial, root-colonizing bacteria thriving in the plant rhizosphere and bulk soil. They exhibit synergistic and antagonistic interactions with the soil microbiota and engage in an array of activities of ecological significance. They promote plant growth by facilitating biotic and abiotic stress tolerance and support the nutrition of host plants. Due to their active growth endorsing activities, PGPRs are considered an eco-friendly alternative to hazardous chemical fertilizers. The use of PGPRs as biofertilizers is a biological approach toward the sustainable intensification of agriculture. However, their application for increasing agricultural yields has several pros and cons. Application of potential biofertilizers that perform well in the laboratory and greenhouse conditions often fails to deliver the expected effects on plant development in field settings. Here we review the different types of PGPR-based biofertilizers, discuss the challenges faced in the widespread adoption of biofertilizers, and deliberate the prospects of using biofertilizers to promote sustainable agriculture.
- Auburn University System United States
- Auburn University United States
- University of Hyderabad India
- Universiti Teknologi MARA Malaysia
- University of Hyderabad India
Environmental effects of industries and plants, TJ807-830, bioinoculant, QD Chemistry, TD194-195, 630, Renewable energy sources, sustainable agriculture, Environmental sciences, PGPR, biofertilizer, GE1-350, rhizosphere
Environmental effects of industries and plants, TJ807-830, bioinoculant, QD Chemistry, TD194-195, 630, Renewable energy sources, sustainable agriculture, Environmental sciences, PGPR, biofertilizer, GE1-350, rhizosphere
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).578 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.01%
