
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Biofloc Systems for Sustainable Production of Economically Important Aquatic Species: A Review

The increasing global population has led to an increase in food demand; consequently, aquaculture is one of the food production sectors that has offered opportunities to alleviate hunger, malnutrition, and poverty. However, the development of a sustainable aquaculture industry has been hindered by the limited availability of natural resources as well as its negative impact on the surrounding environment. Hence, there is an urgent need to search for better aquacultural production systems that, despite their high productivity and profitability, utilize fewer resources such as water, energy, land, and capital in conjunction with a negligible impact on the environment. Biofloc technology (BFT) is one of the most exciting and promising sustainable aquaculture systems; it takes into account the intensive culture of aquatic species, zero water exchange, and improved water quality as a result of beneficial microbial biomass activity, which, at the same time, can be utilized as a nutritious aquaculture feed, thus lowering the costs of production. Furthermore, BFT permits the installation of integrated multi-trophic aquaculture (IMTA) systems in which the wastes of one organism are utilized as feed by another organism, without a detrimental effect on co-cultured species. This review, therefore, highlights the basics of BFT, factors associated with BFT for the successful production of aquatic species, the significance of this food production system for the sustainable production of economically important aquatic species, its economic aspects, drawbacks, limitations, and recommended management aspects for sustainable aquaculture.
- RWTH Aachen University Germany
- American University in Cairo Egypt
- American University in Cairo Egypt
- Kafrelsheikh University Egypt
- Kafrelsheikh University Egypt
690, Environmental effects of industries and plants, info:eu-repo/classification/ddc/690, integrated multi-trophic aquaculture, TJ807-830, sustainability, TD194-195, Renewable energy sources, biofloc technology, Environmental sciences, aquaculture, GE1-350
690, Environmental effects of industries and plants, info:eu-repo/classification/ddc/690, integrated multi-trophic aquaculture, TJ807-830, sustainability, TD194-195, Renewable energy sources, biofloc technology, Environmental sciences, aquaculture, GE1-350
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).69 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
