Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Aquatic Microbial Ec...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aquatic Microbial Ecology
Article . 2020 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Spatial-temporal dynamics of N-cycle functional genes in a temperate Atlantic estuary (Douro, Portugal)

Authors: Paula S. Salgado; Adriano A. Bordalo; Ana Machado;

Spatial-temporal dynamics of N-cycle functional genes in a temperate Atlantic estuary (Douro, Portugal)

Abstract

Understanding the spatial and seasonal dynamics of nitrogen (N)-cycle microbial communities is pivotal for the knowledge of N biogeochemistry. The present study addressed the spatial-temporal variability of nitrification (bacterial and archaeal amoA) and denitrification (nirS, nirK, and nosZI) key genes, as well as of non-denitrifying nitrous oxide (N2O) reducers (nosZII), coupled with key environmental variables, in an estuarine ecosystem (Douro, NW Portugal). Samples were collected on a monthly basis over 1 yr, key physical-chemical parameters were measured, and specific functional gene abundances were assayed. The results revealed a clear seasonality for nirS, nosZII, and bacterial and archaeal amoA abundance, with an increase during the winter/spring seasons. This period was especially characterized by high levels of dissolved oxygen, low temperature, low salinity, and increased turbidity. Indeed, turbidity emerged as the key factor controlling the distribution of nirS, nosZII bacterial, and archaeal amoA abundance. In contrast, the abundance of nosZI increased during the summer, while nirK abundance was enhanced from the fall to late spring. Additionally, the availability of dissolved inorganic nitrogen nutrients had no commensurable effect on N-cycle functional genes. This study of the annual variation of N-cycle functional genes in a temperate Atlantic estuary provides a major contribution to the understanding of how environmental factors potentially influence the distribution and abundance of N-cycle microbial communities.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
bronze