- home
- Advanced Search
- Energy Research
- AU
- Energy Research
- AU
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 Netherlands, Finland, France, Netherlands, Germany, Denmark, Italy, Germany, France, Germany, United Kingdom, SpainPublisher:Oxford University Press (OUP) Funded by:UKRI | Achieving Sustainable Agr..., DFG | Catchments as Reactors: M..., DFG +2 projectsUKRI| Achieving Sustainable Agricultural Systems (ASSIST) ,DFG| Catchments as Reactors: Metabolism of Pollutants on the Landscape Scale (CAMPOS) ,DFG ,AKA| Diversifying cropping systems for Climate-Smart Agriculture (DivCSA) ,EC| FACCE ERA NET PLUSDueri, Sibylle; Brown, Hamish; Asseng, Senthold; Ewert, Frank; Webber, Heidi; George, Mike; Craigie, Rob; Guarin, Jose Rafael; Pequeno, Diego N L; Stella, Tommaso; Ahmed, Mukhtar; Alderman, Phillip D; Basso, Bruno; Berger, Andres G; Mujica, Gennady Bracho; Cammarano, Davide; Chen, Yi; Dumont, Benjamin; Rezaei, Ehsan Eyshi; Fereres, Elias; Ferrise, Roberto; Gaiser, Thomas; Gao, Yujing; Garcia-Vila, Margarita; Gayler, Sebastian; Hochman, Zvi; Hoogenboom, Gerrit; Kersebaum, Kurt C; Nendel, Claas; Olesen, Jørgen E; Padovan, Gloria; Palosuo, Taru; Priesack, Eckart; Pullens, Johannes W M; Rodríguez, Alfredo; Rötter, Reimund P; Ramos, Margarita Ruiz; Semenov, Mikhail A; Senapati, Nimai; Siebert, Stefan; Srivastava, Amit Kumar; Stöckle, Claudio; Supit, Iwan; Tao, Fulu; Thorburn, Peter; Wang, Enli; Weber, Tobias Karl David; Xiao, Liujun; Zhao, Chuang; Zhao, Jin; Zhao, Zhigan; Zhu, Yan; Martre; Pierre;Abstract Crop multi-model ensembles (MME) have proven to be effective in increasing the accuracy of simulations in modelling experiments. However, the ability of MME to capture crop responses to changes in sowing dates and densities has not yet been investigated. These management interventions are some of the main levers for adapting cropping systems to climate change. Here, we explore the performance of a MME of 29 wheat crop models to predict the effect of changing sowing dates and rates on yield and yield components, on two sites located in a high-yielding environment in New Zealand. The experiment was conducted for 6 years and provided 50 combinations of sowing date, sowing density and growing season. We show that the MME simulates seasonal growth of wheat well under standard sowing conditions, but fails under early sowing and high sowing rates. The comparison between observed and simulated in-season fraction of intercepted photosynthetically active radiation (FIPAR) for early sown wheat shows that the MME does not capture the decrease of crop above ground biomass during winter months due to senescence. Models need to better account for tiller competition for light, nutrients, and water during vegetative growth, and early tiller senescence and tiller mortality, which are exacerbated by early sowing, high sowing densities, and warmer winter temperatures.
Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Full-Text: https://doi.org/10.7910/dvn/xa4va2Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2022Publication Server of Helmholtz Zentrum München (PuSH)Article . 2022Data sources: Publication Server of Helmholtz Zentrum München (PuSH)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsFlore (Florence Research Repository)Article . 2022Data sources: Flore (Florence Research Repository)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erac221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 61visibility views 61 download downloads 119 Powered bymore_vert Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Full-Text: https://doi.org/10.7910/dvn/xa4va2Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2022Publication Server of Helmholtz Zentrum München (PuSH)Article . 2022Data sources: Publication Server of Helmholtz Zentrum München (PuSH)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsFlore (Florence Research Repository)Article . 2022Data sources: Flore (Florence Research Repository)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erac221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Germany, Italy, SpainPublisher:Springer Science and Business Media LLC Kamali, Bahareh; Lorite, Ignacio J; Webber, Heidi A; Rezaei, Ehsan Eyshi; Gabaldon-Leal, Clara; Nendel, Claas; Siebert, Stefan; Ramirez-Cuesta, Juan Miguel; Ewert, Frank; Ojeda, Jonathan J;AbstractThis study investigates the main drivers of uncertainties in simulated irrigated maize yield under historical conditions as well as scenarios of increased temperatures and altered irrigation water availability. Using APSIM, MONICA, and SIMPLACE crop models, we quantified the relative contributions of three irrigation water allocation strategies, three sowing dates, and three maize cultivars to the uncertainty in simulated yields. The water allocation strategies were derived from historical records of farmer’s allocation patterns in drip-irrigation scheme of the Genil-Cabra region, Spain (2014–2017). By considering combinations of allocation strategies, the adjusted R2 values (showing the degree of agreement between simulated and observed yields) increased by 29% compared to unrealistic assumptions of considering only near optimal or deficit irrigation scheduling. The factor decomposition analysis based on historic climate showed that irrigation strategies was the main driver of uncertainty in simulated yields (66%). However, under temperature increase scenarios, the contribution of crop model and cultivar choice to uncertainty in simulated yields were as important as irrigation strategy. This was partially due to different model structure in processes related to the temperature responses. Our study calls for including information on irrigation strategies conducted by farmers to reduce the uncertainty in simulated yields at field scale.
IRIS - Università de... arrow_drop_down IRIS - Università degli Studi di CataniaArticle . 2022License: CC BYFull-Text: https://www.iris.unict.it/bitstream/20.500.11769/552494/2/Scientific%20Reports%202022.pdfData sources: IRIS - Università degli Studi di CataniaRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAFachrepositorium LebenswissenschaftenArticle . 2022Data sources: Fachrepositorium LebenswissenschaftenGöttingen Research Online PublicationsArticle . 2022License: CC BYData sources: Göttingen Research Online PublicationsPublikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-08056-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 37visibility views 37 download downloads 90 Powered bymore_vert IRIS - Università de... arrow_drop_down IRIS - Università degli Studi di CataniaArticle . 2022License: CC BYFull-Text: https://www.iris.unict.it/bitstream/20.500.11769/552494/2/Scientific%20Reports%202022.pdfData sources: IRIS - Università degli Studi di CataniaRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAFachrepositorium LebenswissenschaftenArticle . 2022Data sources: Fachrepositorium LebenswissenschaftenGöttingen Research Online PublicationsArticle . 2022License: CC BYData sources: Göttingen Research Online PublicationsPublikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-08056-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Springer Science and Business Media LLC Funded by:CO | BUILDING A FRAMEWORK FOR ...CO| BUILDING A FRAMEWORK FOR POTENTIAL KERNEL WEIGHT AND GRAIN NUMBER DETERMINATION IN GRAIN CROPS: RELATIONSHIP BETWEEN EXPANSIN PROTEINS AND YIELD COMPONENTS IN SUNFLOWER (HELIANTHUS ANNUUS L.)Pierre Martre; Sibylle Dueri; Jose Rafael Guarin; Frank Ewert; Heidi Webber; Daniel F. Calderini; Gemma Molero; Matthew Reynolds; Daniel J. Miralles; Guillermo A. García; Hamish Brown; M. George; Rob Craigie; Jean-Pierre Cohan; Jean-Charles Deswarte; Gustavo A. Slafer; Francesco Giunta; Davide Cammarano; Roberto Ferrise; Thomas Gaiser; Yujing Gao; Zvi Hochman; Gerrit Hoogenboom; L. A. Hunt; Kurt Christian Kersebaum; Claas Nendel; Gloria Padovan; Alex C. Ruane; Tommaso Stella; Iwan Supit; Amit Kumar Srivastava; Peter Thorburn; Enli Wang; Heidi Webber; Chuang Zhao; Zhigan Zhao; Senthold Asseng;Abstract Increasing global food demand will require more food production without further exceeding the planetary boundaries, while at the same time adapting to climate change. We used an ensemble of wheat simulation models, with sink-source improved traits from the highest-yielding wheat genotypes to quantify potential yield gains and associated N requirements. This was explored for current and climate change scenarios across representative sites of major world wheat producing regions. The sink-source traits emerged as climate neutral with 16% yield increase with current N fertilizer applications under both current climate and mid-century climate change scenarios. To achieve the full yield potential, a 52% increase in global average yield under a mid-century RCP8.5 climate scenario, fertilizer use would need to increase fourfold over current use, which would unavoidably lead to higher environmental impacts from wheat production. Our results show the need to improve soil N availability and N use efficiency, along with yield potential.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-2667076/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-2667076/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 France, France, United States, Germany, France, France, France, France, FinlandPublisher:Elsevier BV Claas Nendel; Eckart Priesack; Enli Wang; Jon I. Lizaso; Albert Olioso; James W. Jones; Kurt Christian Kersebaum; Kenneth J. Boote; Remy Manderscheid; Julián Ramírez Villegas; Julián Ramírez Villegas; Heidi Webber; Florian Heinlein; Zhigan Zhao; Bruno Basso; Cynthia Rosenzweig; Thomas Gaiser; Reimund P. Rötter; Patrick Bertuzzi; Christian Baron; Sabine I. Seidel; Sebastian Gayler; Kenel Delusca; Dominique Ripoche; Amit Kumar Srivastava; Tracy E. Twine; Christoph Müller; F. Ewert; Christian Biernath; Jean-Louis Durand; Lajpat R. Ahuja; Hans Johachim Weigel; Delphine Deryng; Saseendran S. Anapalli; Soo-Hyung Kim; Fulu Tao; Alex C. Ruane; Dennis Timlin;handle: 10568/79936
This study assesses the ability of 21 crop models to capture the impact of elevated CO2 concentration ([CO2]) on maize yield and water use as measured in a 2-year Free Air Carbon dioxide Enrichment experiment conducted at the Thunen Institute in Braunschweig, Germany (Manderscheid et al., 2014). Data for ambient [CO2] and irrigated treatments were provided to the 21 models for calibrating plant traits, including weather, soil and management data as well as yield, grain number, above ground biomass, leaf area index, nitrogen concentration in biomass and grain, water use and soil water content. Models differed in their representation of carbon assimilation and evapotranspiration processes. The models reproduced the absence of yield response to elevated [CO2] under well-watered conditions, as well as the impact of water deficit at ambient [CO2], with 50% of models within a range of +/−1 Mg ha−1 around the mean. The bias of the median of the 21 models was less than 1 Mg ha−1. However under water deficit in one of the two years, the models captured only 30% of the exceptionally high [CO2] enhancement on yield observed. Furthermore the ensemble of models was unable to simulate the very low soil water content at anthesis and the increase of soil water and grain number brought about by the elevated [CO2] under dry conditions. Overall, we found models with explicit stomatal control on transpiration tended to perform better. Our results highlight the need for model improvement with respect to simulating transpirational water use and its impact on water status during the kernel-set phase.
University of Florid... arrow_drop_down University of Florida: Digital Library CenterArticle . 2017License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00590868/00001Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2017Full-Text: https://hdl.handle.net/10568/79936Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2017Publication Server of Helmholtz Zentrum München (PuSH)Article . 2017Data sources: Publication Server of Helmholtz Zentrum München (PuSH)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverEuropean Journal of AgronomyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eja.2017.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 80 citations 80 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Florid... arrow_drop_down University of Florida: Digital Library CenterArticle . 2017License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00590868/00001Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2017Full-Text: https://hdl.handle.net/10568/79936Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2017Publication Server of Helmholtz Zentrum München (PuSH)Article . 2017Data sources: Publication Server of Helmholtz Zentrum München (PuSH)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverEuropean Journal of AgronomyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eja.2017.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 United Kingdom, United Kingdom, France, United Kingdom, France, France, Australia, France, Spain, Finland, Germany, Italy, France, Italy, France, United Kingdom, France, United Kingdom, Denmark, NetherlandsPublisher:Wiley Funded by:AKA | Integrated modelling of N..., AKA | Integrated modelling of N..., AKA | Pathways for linking unce... +1 projectsAKA| Integrated modelling of Nordic farming systems for sustainable intensification under climate change (NORFASYS) ,AKA| Integrated modelling of Nordic farming systems for sustainable intensification under climate change (NORFASYS) ,AKA| Pathways for linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,EC| AGREENSKILLSDavide Cammarano; Mikhail A. Semenov; Heidi Horan; Yujing Gao; Frank Ewert; Jørgen E. Olesen; Joost Wolf; Curtis D. Jones; M. Ali Babar; Belay T. Kassie; Manuel Montesino San Martin; Sebastian Gayler; Andrea Maiorano; Dominique Ripoche; Bing Liu; Bing Liu; Pierre Stratonovitch; Zhigan Zhao; Zhigan Zhao; Bruno Basso; Zhao Zhang; Liujun Xiao; Pierre Martre; Claudio O. Stöckle; Garry O'Leary; Mukhtar Ahmed; Mukhtar Ahmed; Elias Fereres; Taru Palosuo; Daniel Wallach; R. Cesar Izaurralde; R. Cesar Izaurralde; Matthew P. Reynolds; Reimund P. Rötter; Ann-Kristin Koehler; Marijn van der Velde; Andrew J. Challinor; Andrew J. Challinor; Peter J. Thorburn; Mohamed Jabloun; Rosella Motzo; Sara Minoli; Benjamin Dumont; Kurt Christian Kersebaum; Claas Nendel; Glenn J. Fitzgerald; Juraj Balkovic; Juraj Balkovic; Marco Bindi; Eckart Priesack; Heidi Webber; Enli Wang; Giacomo De Sanctis; Christian Klein; Christoph Müller; Gerrit Hoogenboom; Francesco Giunta; Alex C. Ruane; Christine Girousse; Margarita Garcia-Vila; Ehsan Eyshi Rezaei; Ehsan Eyshi Rezaei; Thilo Streck; Iwan Supit; Roberto Ferrise; Christian Biernath; Soora Naresh Kumar; Pramod K. Aggarwal; Fulu Tao; Katharina Waha; Yan Zhu; Senthold Asseng; Ahmed M. S. Kheir; John R. Porter; John R. Porter; John R. Porter;doi: 10.1111/gcb.14481
pmid: 30549200
handle: 10261/207120 , 11388/220816 , 2158/1147460 , 11343/284917 , 10568/106685
doi: 10.1111/gcb.14481
pmid: 30549200
handle: 10261/207120 , 11388/220816 , 2158/1147460 , 11343/284917 , 10568/106685
AbstractWheat grain protein concentration is an important determinant of wheat quality for human nutrition that is often overlooked in efforts to improve crop production. We tested and applied a 32‐multi‐model ensemble to simulate global wheat yield and quality in a changing climate. Potential benefits of elevated atmospheric CO2 concentration by 2050 on global wheat grain and protein yield are likely to be negated by impacts from rising temperature and changes in rainfall, but with considerable disparities between regions. Grain and protein yields are expected to be lower and more variable in most low‐rainfall regions, with nitrogen availability limiting growth stimulus from elevated CO2. Introducing genotypes adapted to warmer temperatures (and also considering changes in CO2 and rainfall) could boost global wheat yield by 7% and protein yield by 2%, but grain protein concentration would be reduced by −1.1 percentage points, representing a relative change of −8.6%. Climate change adaptations that benefit grain yield are not always positive for grain quality, putting additional pressure on global wheat production.
CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020Full-Text: https://hdl.handle.net/10568/106685Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2020Copenhagen University Research Information SystemArticle . 2019Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 386 citations 386 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 48visibility views 48 download downloads 74 Powered bymore_vert CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020Full-Text: https://hdl.handle.net/10568/106685Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2020Copenhagen University Research Information SystemArticle . 2019Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 France, United Kingdom, Netherlands, United Kingdom, Finland, Spain, Austria, Italy, Germany, France, France, Denmark, France, United KingdomPublisher:Wiley Funded by:AKA | Pathways for linking unce..., AKA | Integrated modelling of N..., AKA | Pathways for linking unce... +1 projectsAKA| Pathways for linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,AKA| Integrated modelling of Nordic farming systems for sustainable intensification under climate change (NORFASYS) ,AKA| Pathways for linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,AKA| Integrated modelling of Nordic farming systems for sustainable intensification under climate change (NORFASYS)Authors: Ann-Kristin Koehler; Peter J. Thorburn; Sebastian Gayler; Margarita Garcia-Vila; +63 AuthorsAnn-Kristin Koehler; Peter J. Thorburn; Sebastian Gayler; Margarita Garcia-Vila; Curtis D. Jones; Ehsan Eyshi Rezaei; Ehsan Eyshi Rezaei; Bruno Basso; Reimund P. Rötter; Andrew J. Challinor; Andrew J. Challinor; Garry O'Leary; Andrea Maiorano; Andrea Maiorano; Heidi Webber; Mónica Espadafor; Davide Cammarano; Fulu Tao; Zhao Zhang; Mikhail A. Semenov; Pierre Martre; Taru Palosuo; Daniel Wallach; Marijn van der Velde; Liujun Xiao; Liujun Xiao; Thilo Streck; Juraj Balkovic; Juraj Balkovic; Roberto C. Izaurralde; Roberto C. Izaurralde; Katharina Waha; Bing Liu; Joost Wolf; Claas Nendel; Iwan Supit; Christoph Müller; Alex C. Ruane; Roberto Ferrise; Senthold Asseng; Gerrit Hoogenboom; Frank Ewert; Christian Biernath; Soora Naresh Kumar; Giacomo De Sanctis; Marco Bindi; Zhigan Zhao; Zhigan Zhao; Kurt Christian Kersebaum; Dominique Ripoche; Eckart Priesack; John R. Porter; John R. Porter; John R. Porter; Heidi Horan; Belay T. Kassie; Enli Wang; Pramod K. Aggarwal; Christian Klein; Yujing Gao; Benjamin Dumont; Manuel Montesino San Martin; Yan Zhu; Sara Minoli; Claudio O. Stöckle; Mukhtar Ahmed; Mukhtar Ahmed;AbstractEfforts to limit global warming to below 2°C in relation to the pre‐industrial level are under way, in accordance with the 2015 Paris Agreement. However, most impact research on agriculture to date has focused on impacts of warming >2°C on mean crop yields, and many previous studies did not focus sufficiently on extreme events and yield interannual variability. Here, with the latest climate scenarios from the Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) project, we evaluated the impacts of the 2015 Paris Agreement range of global warming (1.5 and 2.0°C warming above the pre‐industrial period) on global wheat production and local yield variability. A multi‐crop and multi‐climate model ensemble over a global network of sites developed by the Agricultural Model Intercomparison and Improvement Project (AgMIP) for Wheat was used to represent major rainfed and irrigated wheat cropping systems. Results show that projected global wheat production will change by −2.3% to 7.0% under the 1.5°C scenario and −2.4% to 10.5% under the 2.0°C scenario, compared to a baseline of 1980–2010, when considering changes in local temperature, rainfall, and global atmospheric CO2 concentration, but no changes in management or wheat cultivars. The projected impact on wheat production varies spatially; a larger increase is projected for temperate high rainfall regions than for moderate hot low rainfall and irrigated regions. Grain yields in warmer regions are more likely to be reduced than in cooler regions. Despite mostly positive impacts on global average grain yields, the frequency of extremely low yields (bottom 5 percentile of baseline distribution) and yield inter‐annual variability will increase under both warming scenarios for some of the hot growing locations, including locations from the second largest global wheat producer—India, which supplies more than 14% of global wheat. The projected global impact of warming <2°C on wheat production is therefore not evenly distributed and will affect regional food security across the globe as well as food prices and trade.
Flore (Florence Rese... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019Full-Text: https://hdl.handle.net/10568/106027Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2020Copenhagen University Research Information SystemArticle . 2019Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 134 citations 134 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 37visibility views 37 download downloads 328 Powered bymore_vert Flore (Florence Rese... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019Full-Text: https://hdl.handle.net/10568/106027Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2020Copenhagen University Research Information SystemArticle . 2019Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2018Embargo end date: 12 Oct 2018 Australia, Australia, France, Germany, Italy, Switzerland, Australia, United Kingdom, Australia, Italy, Australia, Denmark, ItalyPublisher:Springer Science and Business Media LLC Funded by:AKA | Pathways linking uncertai...AKA| Pathways linking uncertainties in model projections of climate and its effects / Consortium: PLUMESWebber H; Webber H; Ewert F; Ewert F; Olesen JE; Müller C; Fronzek S; Ruane AC; Bourgault M; Martre P; Ababaei B; Ababaei B; Ababaei B; Bindi M; Ferrise R; Finger R; Fodor N; GabaldónLeal C; Gaiser T; Jabloun M; Kersebaum KC; Lizaso JI; Lorite IJ; Manceau L; Moriondo M; Nendel C; Rodríguez A; Rodríguez A; RuizRamos M; Semenov MA; Siebert S; Stella T; Stratonovitch P; Trombi G; Wallach D;AbstractUnderstanding the drivers of yield levels under climate change is required to support adaptation planning and respond to changing production risks. This study uses an ensemble of crop models applied on a spatial grid to quantify the contributions of various climatic drivers to past yield variability in grain maize and winter wheat of European cropping systems (1984–2009) and drivers of climate change impacts to 2050. Results reveal that for the current genotypes and mix of irrigated and rainfed production, climate change would lead to yield losses for grain maize and gains for winter wheat. Across Europe, on average heat stress does not increase for either crop in rainfed systems, while drought stress intensifies for maize only. In low-yielding years, drought stress persists as the main driver of losses for both crops, with elevated CO2 offering no yield benefit in these years.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02623843/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02623843/documentUniversity of Southern Queensland: USQ ePrintsArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.1038/s41467-018-06525-2Data sources: Bielefeld Academic Search Engine (BASE)Göttingen Research Online PublicationsArticle . 2020License: CC BYData sources: Göttingen Research Online PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-06525-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 281 citations 281 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02623843/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02623843/documentUniversity of Southern Queensland: USQ ePrintsArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.1038/s41467-018-06525-2Data sources: Bielefeld Academic Search Engine (BASE)Göttingen Research Online PublicationsArticle . 2020License: CC BYData sources: Göttingen Research Online PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-06525-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United Kingdom, Italy, Netherlands, France, Netherlands, Italy, Czech Republic, France, Spain, France, Czech Republic, Finland, GermanyPublisher:IOP Publishing Funded by:CO | BUILDING A FRAMEWORK FOR ...CO| BUILDING A FRAMEWORK FOR POTENTIAL KERNEL WEIGHT AND GRAIN NUMBER DETERMINATION IN GRAIN CROPS: RELATIONSHIP BETWEEN EXPANSIN PROTEINS AND YIELD COMPONENTS IN SUNFLOWER (HELIANTHUS ANNUUS L.)Guarin, Jose Rafael; Martre, Pierre; Ewert, Frank; Webber, Heidi; Dueri, Sibylle; Calderini, Daniel; Reynolds, Matthew; Molero, Gemma; Miralles, Daniel; Garcia, Guillermo; Slafer, Gustavo; Giunta, Francesco; Pequeno, Diego N. L.; Stella, Tommaso; Ahmed, Mukhtar; Alderman, Phillip D.; Basso, Bruno; Berger, Andres G.; Bindi, Marco; Bracho-Mujica, Gennady; Cammarano, Davide; Chen, Yi; Dumont, Benjamin; Rezaei, Ehsan Eyshi; Fereres, Elias; Ferrise, Roberto; Gaiser, Thomas; Gao, Yujing; Garcia-Vila, Margarita; Gayler, Sebastian; Hochman, Zvi; Hoogenboom, Gerrit; Hunt, Leslie A.; Kersebaum, Kurt C.; Nendel, Claas; Olesen, Jørgen E.; Palosuo, Taru; Priesack, Eckart; Pullens, Johannes W. M.; Rodríguez, Alfredo; Rötter, Reimund P.; Ramos, Margarita Ruiz; Semenov, Mikhail A.; Senapati, Nimai; Siebert, Stefan; Srivastava, Amit Kumar; Stöckle, Claudio; Supit, Iwan; Tao, Fulu; Thorburn, Peter; Wang, Enli; Weber, Tobias Karl David; Xiao, Liujun; Zhang, Zhao; Zhao, Chuang; Zhao, Jin; Zhao, Zhigan; Zhu, Yan; Asseng, Senthold; Guarin, Jose Rafael;; Martre, Pierre;; Ewert, Frank;; Webber, Heidi;; Dueri, Sibylle;; Calderini, Daniel;; Reynolds, Matthew;; Molero, Gemma;; Miralles, Daniel;; Garcia, Guillermo;; Slafer, Gustavo;; Giunta, Francesco;; Pequeno, Diego N L;; Stella, Tommaso;; Ahmed, Mukhtar;; Alderman, Phillip D;; Basso, Bruno;; Berger, Andres G;; Bindi, Marco;; Bracho-Mujica, Gennady;; Cammarano, Davide;; Chen, Yi;; Dumont, Benjamin;; Rezaei, Ehsan Eyshi;; Fereres, Elias;; Ferrise, Roberto;; Gaiser, Thomas;; Gao, Yujing;; Garcia-Vila, Margarita;; Gayler, Sebastian;; Hochman, Zvi;; Hoogenboom, Gerrit;; Hunt, Leslie A;; Kersebaum, Kurt C;; Nendel, Claas;; Olesen, Jørgen E;; Palosuo, Taru;; Priesack, Eckart;; Pullens, Johannes W M;; Rodríguez, Alfredo;; Rötter, Reimund P;; Ramos, Margarita Ruiz;; Semenov, Mikhail A;; Senapati, Nimai;; Siebert, Stefan;; Srivastava, Amit Kumar;; Stöckle, Claudio;; Supit, Iwan;; Tao, Fulu;; Thorburn, Peter;; Wang, Enli;; Weber, Tobias Karl David;; Xiao, Liujun;; Zhang, Zhao;; Zhao, Chuang;; Zhao, Jin;; Zhao, Zhigan;; Zhu, Yan;; Asseng, Senthold;;handle: 10261/286709 , 11388/355191 , 11388/329749 , 2158/1304741 , 10883/22405 , 10568/129183
Abstract Wheat is the most widely grown food crop, with 761 Mt produced globally in 2020. To meet the expected grain demand by mid-century, wheat breeding strategies must continue to improve upon yield-advancing physiological traits, regardless of climate change impacts. Here, the best performing doubled haploid (DH) crosses with an increased canopy photosynthesis from wheat field experiments in the literature were extrapolated to the global scale with a multi-model ensemble of process-based wheat crop models to estimate global wheat production. The DH field experiments were also used to determine a quantitative relationship between wheat production and solar radiation to estimate genetic yield potential. The multi-model ensemble projected a global annual wheat production of 1050 ± 145 Mt due to the improved canopy photosynthesis, a 37% increase, without expanding cropping area. Achieving this genetic yield potential would meet the lower estimate of the projected grain demand in 2050, albeit with considerable challenges.
Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2022License: CC BY NC NDFull-Text: https://flore.unifi.it/bitstream/2158/1304741/1/Guarin_2022_Environ._Res._Lett._17_124045.pdfData sources: Flore (Florence Research Repository)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129183Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2022Data sources: Repository of the Czech Academy of SciencesPublication Server of Helmholtz Zentrum München (PuSH)Article . 2022Data sources: Publication Server of Helmholtz Zentrum München (PuSH)Göttingen Research Online PublicationsArticle . 2022License: CC BYData sources: Göttingen Research Online PublicationsWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aca77c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 46visibility views 46 download downloads 93 Powered bymore_vert Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2022License: CC BY NC NDFull-Text: https://flore.unifi.it/bitstream/2158/1304741/1/Guarin_2022_Environ._Res._Lett._17_124045.pdfData sources: Flore (Florence Research Repository)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129183Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2022Data sources: Repository of the Czech Academy of SciencesPublication Server of Helmholtz Zentrum München (PuSH)Article . 2022Data sources: Publication Server of Helmholtz Zentrum München (PuSH)Göttingen Research Online PublicationsArticle . 2022License: CC BYData sources: Göttingen Research Online PublicationsWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aca77c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Netherlands, France, Germany, Italy, France, ItalyPublisher:Springer Science and Business Media LLC Funded by:CO | BUILDING A FRAMEWORK FOR ..., DFGCO| BUILDING A FRAMEWORK FOR POTENTIAL KERNEL WEIGHT AND GRAIN NUMBER DETERMINATION IN GRAIN CROPS: RELATIONSHIP BETWEEN EXPANSIN PROTEINS AND YIELD COMPONENTS IN SUNFLOWER (HELIANTHUS ANNUUS L.) ,DFGPierre Martre; Sibylle Dueri; Jose Rafael Guarin; Frank Ewert; Heidi Webber; Daniel Calderini; Gemma Molero; Matthew Reynolds; Daniel Miralles; Guillermo Garcia; Hamish Brown; Mike George; Rob Craigie; Jean-Pierre Cohan; Jean-Charles Deswarte; Gustavo Slafer; Francesco Giunta; Davide Cammarano; Roberto Ferrise; Thomas Gaiser; Yujing Gao; Zvi Hochman; Gerrit Hoogenboom; Leslie A. Hunt; Kurt C. Kersebaum; Claas Nendel; Gloria Padovan; Alex C. Ruane; Amit Kumar Srivastava; Tommaso Stella; Iwan Supit; Peter Thorburn; Enli Wang; Joost Wolf; Chuang Zhao; Zhigan Zhao; Senthold Asseng;Increasing global food demand will require more food production1 without further exceeding the planetary boundaries2 while simultaneously adapting to climate change3. We used an ensemble of wheat simulation models with improved sink and source traits from the highest-yielding wheat genotypes4 to quantify potential yield gains and associated nitrogen requirements. This was explored for current and climate change scenarios across representative sites of major world wheat producing regions. The improved sink and source traits increased yield by 16% with current nitrogen fertilizer applications under both current climate and mid-century climate change scenarios. To achieve the full yield potential-a 52% increase in global average yield under a mid-century high warming climate scenario (RCP8.5), fertilizer use would need to increase fourfold over current use, which would unavoidably lead to higher environmental impacts from wheat production. Our results show the need to improve soil nitrogen availability and nitrogen use efficiency, along with yield potential.
Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2024Flore (Florence Research Repository)Article . 2024Data sources: Flore (Florence Research Repository)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-024-01739-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 18 citations 18 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2024Flore (Florence Research Repository)Article . 2024Data sources: Flore (Florence Research Repository)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-024-01739-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Australia, GermanyPublisher:Elsevier BV Jonathan J. Ojeda; Ehsan Eyshi Rezaei; Tomas A. Remenyi; Mathew A. Webb; Heidi A. Webber; Bahareh Kamali; Rebecca M.B. Harris; Jaclyn N. Brown; Darren B. Kidd; Caroline L. Mohammed; Stefan Siebert; Frank Ewert; Holger Meinke;pmid: 31787284
Input data aggregation affects crop model estimates at the regional level. Previous studies have focused on the impact of aggregating climate data used to compute crop yields. However, little is known about the combined data aggregation effect of climate (DAEc) and soil (DAEs) on irrigation water requirement (IWR) in cool-temperate and spatially heterogeneous environments. The aims of this study were to quantify DAEc and DAEs of model input data and their combined impacts for simulated irrigated and rainfed yield and IWR. The Agricultural Production Systems sIMulator Next Generation model was applied for the period 1998-2017 across areas suitable for potato (Solanum tuberosum L.) in Tasmania, Australia, using data at 5, 15, 25 and 40 km resolution. Spatial variances of inputs and outputs were evaluated by the relative absolute difference (rAD¯) between the aggregated grids and the 5 km grids. Climate data aggregation resulted in a rAD¯ of 0.7-12.1%, with high values especially for areas with pronounced differences in elevation. The rAD¯ of soil data was higher (5.6-26.3%) than rAD¯ of climate data and was mainly affected by aggregation of organic carbon and maximum plant available water capacity (i.e. the difference between field capacity and wilting point in the effective root zone). For yield estimates, the difference among resolutions (5 km vs. 40 km) was more pronounced for rainfed (rAD¯ = 14.5%) than irrigated conditions (rAD¯ = 3.0%). The rAD¯ of IWR was 15.7% when using input data at 40 km resolution. Therefore, reliable simulations of rainfed yield require a higher spatial resolution than simulation of irrigated yields. This needs to be considered when conducting regional modelling studies across Tasmania. This study also highlights the need to separately quantify the impact of input data aggregation on model outputs to inform about data aggregation errors and identify those variables that explain these errors.
Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2020The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.135589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2020The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.135589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 Netherlands, Finland, France, Netherlands, Germany, Denmark, Italy, Germany, France, Germany, United Kingdom, SpainPublisher:Oxford University Press (OUP) Funded by:UKRI | Achieving Sustainable Agr..., DFG | Catchments as Reactors: M..., DFG +2 projectsUKRI| Achieving Sustainable Agricultural Systems (ASSIST) ,DFG| Catchments as Reactors: Metabolism of Pollutants on the Landscape Scale (CAMPOS) ,DFG ,AKA| Diversifying cropping systems for Climate-Smart Agriculture (DivCSA) ,EC| FACCE ERA NET PLUSDueri, Sibylle; Brown, Hamish; Asseng, Senthold; Ewert, Frank; Webber, Heidi; George, Mike; Craigie, Rob; Guarin, Jose Rafael; Pequeno, Diego N L; Stella, Tommaso; Ahmed, Mukhtar; Alderman, Phillip D; Basso, Bruno; Berger, Andres G; Mujica, Gennady Bracho; Cammarano, Davide; Chen, Yi; Dumont, Benjamin; Rezaei, Ehsan Eyshi; Fereres, Elias; Ferrise, Roberto; Gaiser, Thomas; Gao, Yujing; Garcia-Vila, Margarita; Gayler, Sebastian; Hochman, Zvi; Hoogenboom, Gerrit; Kersebaum, Kurt C; Nendel, Claas; Olesen, Jørgen E; Padovan, Gloria; Palosuo, Taru; Priesack, Eckart; Pullens, Johannes W M; Rodríguez, Alfredo; Rötter, Reimund P; Ramos, Margarita Ruiz; Semenov, Mikhail A; Senapati, Nimai; Siebert, Stefan; Srivastava, Amit Kumar; Stöckle, Claudio; Supit, Iwan; Tao, Fulu; Thorburn, Peter; Wang, Enli; Weber, Tobias Karl David; Xiao, Liujun; Zhao, Chuang; Zhao, Jin; Zhao, Zhigan; Zhu, Yan; Martre; Pierre;Abstract Crop multi-model ensembles (MME) have proven to be effective in increasing the accuracy of simulations in modelling experiments. However, the ability of MME to capture crop responses to changes in sowing dates and densities has not yet been investigated. These management interventions are some of the main levers for adapting cropping systems to climate change. Here, we explore the performance of a MME of 29 wheat crop models to predict the effect of changing sowing dates and rates on yield and yield components, on two sites located in a high-yielding environment in New Zealand. The experiment was conducted for 6 years and provided 50 combinations of sowing date, sowing density and growing season. We show that the MME simulates seasonal growth of wheat well under standard sowing conditions, but fails under early sowing and high sowing rates. The comparison between observed and simulated in-season fraction of intercepted photosynthetically active radiation (FIPAR) for early sown wheat shows that the MME does not capture the decrease of crop above ground biomass during winter months due to senescence. Models need to better account for tiller competition for light, nutrients, and water during vegetative growth, and early tiller senescence and tiller mortality, which are exacerbated by early sowing, high sowing densities, and warmer winter temperatures.
Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Full-Text: https://doi.org/10.7910/dvn/xa4va2Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2022Publication Server of Helmholtz Zentrum München (PuSH)Article . 2022Data sources: Publication Server of Helmholtz Zentrum München (PuSH)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsFlore (Florence Research Repository)Article . 2022Data sources: Flore (Florence Research Repository)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erac221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 61visibility views 61 download downloads 119 Powered bymore_vert Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Full-Text: https://doi.org/10.7910/dvn/xa4va2Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2022Publication Server of Helmholtz Zentrum München (PuSH)Article . 2022Data sources: Publication Server of Helmholtz Zentrum München (PuSH)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsFlore (Florence Research Repository)Article . 2022Data sources: Flore (Florence Research Repository)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erac221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Germany, Italy, SpainPublisher:Springer Science and Business Media LLC Kamali, Bahareh; Lorite, Ignacio J; Webber, Heidi A; Rezaei, Ehsan Eyshi; Gabaldon-Leal, Clara; Nendel, Claas; Siebert, Stefan; Ramirez-Cuesta, Juan Miguel; Ewert, Frank; Ojeda, Jonathan J;AbstractThis study investigates the main drivers of uncertainties in simulated irrigated maize yield under historical conditions as well as scenarios of increased temperatures and altered irrigation water availability. Using APSIM, MONICA, and SIMPLACE crop models, we quantified the relative contributions of three irrigation water allocation strategies, three sowing dates, and three maize cultivars to the uncertainty in simulated yields. The water allocation strategies were derived from historical records of farmer’s allocation patterns in drip-irrigation scheme of the Genil-Cabra region, Spain (2014–2017). By considering combinations of allocation strategies, the adjusted R2 values (showing the degree of agreement between simulated and observed yields) increased by 29% compared to unrealistic assumptions of considering only near optimal or deficit irrigation scheduling. The factor decomposition analysis based on historic climate showed that irrigation strategies was the main driver of uncertainty in simulated yields (66%). However, under temperature increase scenarios, the contribution of crop model and cultivar choice to uncertainty in simulated yields were as important as irrigation strategy. This was partially due to different model structure in processes related to the temperature responses. Our study calls for including information on irrigation strategies conducted by farmers to reduce the uncertainty in simulated yields at field scale.
IRIS - Università de... arrow_drop_down IRIS - Università degli Studi di CataniaArticle . 2022License: CC BYFull-Text: https://www.iris.unict.it/bitstream/20.500.11769/552494/2/Scientific%20Reports%202022.pdfData sources: IRIS - Università degli Studi di CataniaRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAFachrepositorium LebenswissenschaftenArticle . 2022Data sources: Fachrepositorium LebenswissenschaftenGöttingen Research Online PublicationsArticle . 2022License: CC BYData sources: Göttingen Research Online PublicationsPublikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-08056-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 37visibility views 37 download downloads 90 Powered bymore_vert IRIS - Università de... arrow_drop_down IRIS - Università degli Studi di CataniaArticle . 2022License: CC BYFull-Text: https://www.iris.unict.it/bitstream/20.500.11769/552494/2/Scientific%20Reports%202022.pdfData sources: IRIS - Università degli Studi di CataniaRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAFachrepositorium LebenswissenschaftenArticle . 2022Data sources: Fachrepositorium LebenswissenschaftenGöttingen Research Online PublicationsArticle . 2022License: CC BYData sources: Göttingen Research Online PublicationsPublikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-08056-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Springer Science and Business Media LLC Funded by:CO | BUILDING A FRAMEWORK FOR ...CO| BUILDING A FRAMEWORK FOR POTENTIAL KERNEL WEIGHT AND GRAIN NUMBER DETERMINATION IN GRAIN CROPS: RELATIONSHIP BETWEEN EXPANSIN PROTEINS AND YIELD COMPONENTS IN SUNFLOWER (HELIANTHUS ANNUUS L.)Pierre Martre; Sibylle Dueri; Jose Rafael Guarin; Frank Ewert; Heidi Webber; Daniel F. Calderini; Gemma Molero; Matthew Reynolds; Daniel J. Miralles; Guillermo A. García; Hamish Brown; M. George; Rob Craigie; Jean-Pierre Cohan; Jean-Charles Deswarte; Gustavo A. Slafer; Francesco Giunta; Davide Cammarano; Roberto Ferrise; Thomas Gaiser; Yujing Gao; Zvi Hochman; Gerrit Hoogenboom; L. A. Hunt; Kurt Christian Kersebaum; Claas Nendel; Gloria Padovan; Alex C. Ruane; Tommaso Stella; Iwan Supit; Amit Kumar Srivastava; Peter Thorburn; Enli Wang; Heidi Webber; Chuang Zhao; Zhigan Zhao; Senthold Asseng;Abstract Increasing global food demand will require more food production without further exceeding the planetary boundaries, while at the same time adapting to climate change. We used an ensemble of wheat simulation models, with sink-source improved traits from the highest-yielding wheat genotypes to quantify potential yield gains and associated N requirements. This was explored for current and climate change scenarios across representative sites of major world wheat producing regions. The sink-source traits emerged as climate neutral with 16% yield increase with current N fertilizer applications under both current climate and mid-century climate change scenarios. To achieve the full yield potential, a 52% increase in global average yield under a mid-century RCP8.5 climate scenario, fertilizer use would need to increase fourfold over current use, which would unavoidably lead to higher environmental impacts from wheat production. Our results show the need to improve soil N availability and N use efficiency, along with yield potential.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-2667076/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-2667076/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 France, France, United States, Germany, France, France, France, France, FinlandPublisher:Elsevier BV Claas Nendel; Eckart Priesack; Enli Wang; Jon I. Lizaso; Albert Olioso; James W. Jones; Kurt Christian Kersebaum; Kenneth J. Boote; Remy Manderscheid; Julián Ramírez Villegas; Julián Ramírez Villegas; Heidi Webber; Florian Heinlein; Zhigan Zhao; Bruno Basso; Cynthia Rosenzweig; Thomas Gaiser; Reimund P. Rötter; Patrick Bertuzzi; Christian Baron; Sabine I. Seidel; Sebastian Gayler; Kenel Delusca; Dominique Ripoche; Amit Kumar Srivastava; Tracy E. Twine; Christoph Müller; F. Ewert; Christian Biernath; Jean-Louis Durand; Lajpat R. Ahuja; Hans Johachim Weigel; Delphine Deryng; Saseendran S. Anapalli; Soo-Hyung Kim; Fulu Tao; Alex C. Ruane; Dennis Timlin;handle: 10568/79936
This study assesses the ability of 21 crop models to capture the impact of elevated CO2 concentration ([CO2]) on maize yield and water use as measured in a 2-year Free Air Carbon dioxide Enrichment experiment conducted at the Thunen Institute in Braunschweig, Germany (Manderscheid et al., 2014). Data for ambient [CO2] and irrigated treatments were provided to the 21 models for calibrating plant traits, including weather, soil and management data as well as yield, grain number, above ground biomass, leaf area index, nitrogen concentration in biomass and grain, water use and soil water content. Models differed in their representation of carbon assimilation and evapotranspiration processes. The models reproduced the absence of yield response to elevated [CO2] under well-watered conditions, as well as the impact of water deficit at ambient [CO2], with 50% of models within a range of +/−1 Mg ha−1 around the mean. The bias of the median of the 21 models was less than 1 Mg ha−1. However under water deficit in one of the two years, the models captured only 30% of the exceptionally high [CO2] enhancement on yield observed. Furthermore the ensemble of models was unable to simulate the very low soil water content at anthesis and the increase of soil water and grain number brought about by the elevated [CO2] under dry conditions. Overall, we found models with explicit stomatal control on transpiration tended to perform better. Our results highlight the need for model improvement with respect to simulating transpirational water use and its impact on water status during the kernel-set phase.
University of Florid... arrow_drop_down University of Florida: Digital Library CenterArticle . 2017License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00590868/00001Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2017Full-Text: https://hdl.handle.net/10568/79936Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2017Publication Server of Helmholtz Zentrum München (PuSH)Article . 2017Data sources: Publication Server of Helmholtz Zentrum München (PuSH)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverEuropean Journal of AgronomyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eja.2017.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 80 citations 80 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Florid... arrow_drop_down University of Florida: Digital Library CenterArticle . 2017License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00590868/00001Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2017Full-Text: https://hdl.handle.net/10568/79936Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2017Publication Server of Helmholtz Zentrum München (PuSH)Article . 2017Data sources: Publication Server of Helmholtz Zentrum München (PuSH)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverEuropean Journal of AgronomyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eja.2017.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 United Kingdom, United Kingdom, France, United Kingdom, France, France, Australia, France, Spain, Finland, Germany, Italy, France, Italy, France, United Kingdom, France, United Kingdom, Denmark, NetherlandsPublisher:Wiley Funded by:AKA | Integrated modelling of N..., AKA | Integrated modelling of N..., AKA | Pathways for linking unce... +1 projectsAKA| Integrated modelling of Nordic farming systems for sustainable intensification under climate change (NORFASYS) ,AKA| Integrated modelling of Nordic farming systems for sustainable intensification under climate change (NORFASYS) ,AKA| Pathways for linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,EC| AGREENSKILLSDavide Cammarano; Mikhail A. Semenov; Heidi Horan; Yujing Gao; Frank Ewert; Jørgen E. Olesen; Joost Wolf; Curtis D. Jones; M. Ali Babar; Belay T. Kassie; Manuel Montesino San Martin; Sebastian Gayler; Andrea Maiorano; Dominique Ripoche; Bing Liu; Bing Liu; Pierre Stratonovitch; Zhigan Zhao; Zhigan Zhao; Bruno Basso; Zhao Zhang; Liujun Xiao; Pierre Martre; Claudio O. Stöckle; Garry O'Leary; Mukhtar Ahmed; Mukhtar Ahmed; Elias Fereres; Taru Palosuo; Daniel Wallach; R. Cesar Izaurralde; R. Cesar Izaurralde; Matthew P. Reynolds; Reimund P. Rötter; Ann-Kristin Koehler; Marijn van der Velde; Andrew J. Challinor; Andrew J. Challinor; Peter J. Thorburn; Mohamed Jabloun; Rosella Motzo; Sara Minoli; Benjamin Dumont; Kurt Christian Kersebaum; Claas Nendel; Glenn J. Fitzgerald; Juraj Balkovic; Juraj Balkovic; Marco Bindi; Eckart Priesack; Heidi Webber; Enli Wang; Giacomo De Sanctis; Christian Klein; Christoph Müller; Gerrit Hoogenboom; Francesco Giunta; Alex C. Ruane; Christine Girousse; Margarita Garcia-Vila; Ehsan Eyshi Rezaei; Ehsan Eyshi Rezaei; Thilo Streck; Iwan Supit; Roberto Ferrise; Christian Biernath; Soora Naresh Kumar; Pramod K. Aggarwal; Fulu Tao; Katharina Waha; Yan Zhu; Senthold Asseng; Ahmed M. S. Kheir; John R. Porter; John R. Porter; John R. Porter;doi: 10.1111/gcb.14481
pmid: 30549200
handle: 10261/207120 , 11388/220816 , 2158/1147460 , 11343/284917 , 10568/106685
doi: 10.1111/gcb.14481
pmid: 30549200
handle: 10261/207120 , 11388/220816 , 2158/1147460 , 11343/284917 , 10568/106685
AbstractWheat grain protein concentration is an important determinant of wheat quality for human nutrition that is often overlooked in efforts to improve crop production. We tested and applied a 32‐multi‐model ensemble to simulate global wheat yield and quality in a changing climate. Potential benefits of elevated atmospheric CO2 concentration by 2050 on global wheat grain and protein yield are likely to be negated by impacts from rising temperature and changes in rainfall, but with considerable disparities between regions. Grain and protein yields are expected to be lower and more variable in most low‐rainfall regions, with nitrogen availability limiting growth stimulus from elevated CO2. Introducing genotypes adapted to warmer temperatures (and also considering changes in CO2 and rainfall) could boost global wheat yield by 7% and protein yield by 2%, but grain protein concentration would be reduced by −1.1 percentage points, representing a relative change of −8.6%. Climate change adaptations that benefit grain yield are not always positive for grain quality, putting additional pressure on global wheat production.
CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020Full-Text: https://hdl.handle.net/10568/106685Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2020Copenhagen University Research Information SystemArticle . 2019Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 386 citations 386 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 48visibility views 48 download downloads 74 Powered bymore_vert CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020Full-Text: https://hdl.handle.net/10568/106685Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2020Copenhagen University Research Information SystemArticle . 2019Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 France, United Kingdom, Netherlands, United Kingdom, Finland, Spain, Austria, Italy, Germany, France, France, Denmark, France, United KingdomPublisher:Wiley Funded by:AKA | Pathways for linking unce..., AKA | Integrated modelling of N..., AKA | Pathways for linking unce... +1 projectsAKA| Pathways for linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,AKA| Integrated modelling of Nordic farming systems for sustainable intensification under climate change (NORFASYS) ,AKA| Pathways for linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,AKA| Integrated modelling of Nordic farming systems for sustainable intensification under climate change (NORFASYS)Authors: Ann-Kristin Koehler; Peter J. Thorburn; Sebastian Gayler; Margarita Garcia-Vila; +63 AuthorsAnn-Kristin Koehler; Peter J. Thorburn; Sebastian Gayler; Margarita Garcia-Vila; Curtis D. Jones; Ehsan Eyshi Rezaei; Ehsan Eyshi Rezaei; Bruno Basso; Reimund P. Rötter; Andrew J. Challinor; Andrew J. Challinor; Garry O'Leary; Andrea Maiorano; Andrea Maiorano; Heidi Webber; Mónica Espadafor; Davide Cammarano; Fulu Tao; Zhao Zhang; Mikhail A. Semenov; Pierre Martre; Taru Palosuo; Daniel Wallach; Marijn van der Velde; Liujun Xiao; Liujun Xiao; Thilo Streck; Juraj Balkovic; Juraj Balkovic; Roberto C. Izaurralde; Roberto C. Izaurralde; Katharina Waha; Bing Liu; Joost Wolf; Claas Nendel; Iwan Supit; Christoph Müller; Alex C. Ruane; Roberto Ferrise; Senthold Asseng; Gerrit Hoogenboom; Frank Ewert; Christian Biernath; Soora Naresh Kumar; Giacomo De Sanctis; Marco Bindi; Zhigan Zhao; Zhigan Zhao; Kurt Christian Kersebaum; Dominique Ripoche; Eckart Priesack; John R. Porter; John R. Porter; John R. Porter; Heidi Horan; Belay T. Kassie; Enli Wang; Pramod K. Aggarwal; Christian Klein; Yujing Gao; Benjamin Dumont; Manuel Montesino San Martin; Yan Zhu; Sara Minoli; Claudio O. Stöckle; Mukhtar Ahmed; Mukhtar Ahmed;AbstractEfforts to limit global warming to below 2°C in relation to the pre‐industrial level are under way, in accordance with the 2015 Paris Agreement. However, most impact research on agriculture to date has focused on impacts of warming >2°C on mean crop yields, and many previous studies did not focus sufficiently on extreme events and yield interannual variability. Here, with the latest climate scenarios from the Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) project, we evaluated the impacts of the 2015 Paris Agreement range of global warming (1.5 and 2.0°C warming above the pre‐industrial period) on global wheat production and local yield variability. A multi‐crop and multi‐climate model ensemble over a global network of sites developed by the Agricultural Model Intercomparison and Improvement Project (AgMIP) for Wheat was used to represent major rainfed and irrigated wheat cropping systems. Results show that projected global wheat production will change by −2.3% to 7.0% under the 1.5°C scenario and −2.4% to 10.5% under the 2.0°C scenario, compared to a baseline of 1980–2010, when considering changes in local temperature, rainfall, and global atmospheric CO2 concentration, but no changes in management or wheat cultivars. The projected impact on wheat production varies spatially; a larger increase is projected for temperate high rainfall regions than for moderate hot low rainfall and irrigated regions. Grain yields in warmer regions are more likely to be reduced than in cooler regions. Despite mostly positive impacts on global average grain yields, the frequency of extremely low yields (bottom 5 percentile of baseline distribution) and yield inter‐annual variability will increase under both warming scenarios for some of the hot growing locations, including locations from the second largest global wheat producer—India, which supplies more than 14% of global wheat. The projected global impact of warming <2°C on wheat production is therefore not evenly distributed and will affect regional food security across the globe as well as food prices and trade.
Flore (Florence Rese... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019Full-Text: https://hdl.handle.net/10568/106027Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2020Copenhagen University Research Information SystemArticle . 2019Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 134 citations 134 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 37visibility views 37 download downloads 328 Powered bymore_vert Flore (Florence Rese... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019Full-Text: https://hdl.handle.net/10568/106027Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2020Copenhagen University Research Information SystemArticle . 2019Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2018Embargo end date: 12 Oct 2018 Australia, Australia, France, Germany, Italy, Switzerland, Australia, United Kingdom, Australia, Italy, Australia, Denmark, ItalyPublisher:Springer Science and Business Media LLC Funded by:AKA | Pathways linking uncertai...AKA| Pathways linking uncertainties in model projections of climate and its effects / Consortium: PLUMESWebber H; Webber H; Ewert F; Ewert F; Olesen JE; Müller C; Fronzek S; Ruane AC; Bourgault M; Martre P; Ababaei B; Ababaei B; Ababaei B; Bindi M; Ferrise R; Finger R; Fodor N; GabaldónLeal C; Gaiser T; Jabloun M; Kersebaum KC; Lizaso JI; Lorite IJ; Manceau L; Moriondo M; Nendel C; Rodríguez A; Rodríguez A; RuizRamos M; Semenov MA; Siebert S; Stella T; Stratonovitch P; Trombi G; Wallach D;AbstractUnderstanding the drivers of yield levels under climate change is required to support adaptation planning and respond to changing production risks. This study uses an ensemble of crop models applied on a spatial grid to quantify the contributions of various climatic drivers to past yield variability in grain maize and winter wheat of European cropping systems (1984–2009) and drivers of climate change impacts to 2050. Results reveal that for the current genotypes and mix of irrigated and rainfed production, climate change would lead to yield losses for grain maize and gains for winter wheat. Across Europe, on average heat stress does not increase for either crop in rainfed systems, while drought stress intensifies for maize only. In low-yielding years, drought stress persists as the main driver of losses for both crops, with elevated CO2 offering no yield benefit in these years.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02623843/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02623843/documentUniversity of Southern Queensland: USQ ePrintsArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.1038/s41467-018-06525-2Data sources: Bielefeld Academic Search Engine (BASE)Göttingen Research Online PublicationsArticle . 2020License: CC BYData sources: Göttingen Research Online PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-06525-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 281 citations 281 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02623843/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02623843/documentUniversity of Southern Queensland: USQ ePrintsArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.1038/s41467-018-06525-2Data sources: Bielefeld Academic Search Engine (BASE)Göttingen Research Online PublicationsArticle . 2020License: CC BYData sources: Göttingen Research Online PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-06525-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United Kingdom, Italy, Netherlands, France, Netherlands, Italy, Czech Republic, France, Spain, France, Czech Republic, Finland, GermanyPublisher:IOP Publishing Funded by:CO | BUILDING A FRAMEWORK FOR ...CO| BUILDING A FRAMEWORK FOR POTENTIAL KERNEL WEIGHT AND GRAIN NUMBER DETERMINATION IN GRAIN CROPS: RELATIONSHIP BETWEEN EXPANSIN PROTEINS AND YIELD COMPONENTS IN SUNFLOWER (HELIANTHUS ANNUUS L.)Guarin, Jose Rafael; Martre, Pierre; Ewert, Frank; Webber, Heidi; Dueri, Sibylle; Calderini, Daniel; Reynolds, Matthew; Molero, Gemma; Miralles, Daniel; Garcia, Guillermo; Slafer, Gustavo; Giunta, Francesco; Pequeno, Diego N. L.; Stella, Tommaso; Ahmed, Mukhtar; Alderman, Phillip D.; Basso, Bruno; Berger, Andres G.; Bindi, Marco; Bracho-Mujica, Gennady; Cammarano, Davide; Chen, Yi; Dumont, Benjamin; Rezaei, Ehsan Eyshi; Fereres, Elias; Ferrise, Roberto; Gaiser, Thomas; Gao, Yujing; Garcia-Vila, Margarita; Gayler, Sebastian; Hochman, Zvi; Hoogenboom, Gerrit; Hunt, Leslie A.; Kersebaum, Kurt C.; Nendel, Claas; Olesen, Jørgen E.; Palosuo, Taru; Priesack, Eckart; Pullens, Johannes W. M.; Rodríguez, Alfredo; Rötter, Reimund P.; Ramos, Margarita Ruiz; Semenov, Mikhail A.; Senapati, Nimai; Siebert, Stefan; Srivastava, Amit Kumar; Stöckle, Claudio; Supit, Iwan; Tao, Fulu; Thorburn, Peter; Wang, Enli; Weber, Tobias Karl David; Xiao, Liujun; Zhang, Zhao; Zhao, Chuang; Zhao, Jin; Zhao, Zhigan; Zhu, Yan; Asseng, Senthold; Guarin, Jose Rafael;; Martre, Pierre;; Ewert, Frank;; Webber, Heidi;; Dueri, Sibylle;; Calderini, Daniel;; Reynolds, Matthew;; Molero, Gemma;; Miralles, Daniel;; Garcia, Guillermo;; Slafer, Gustavo;; Giunta, Francesco;; Pequeno, Diego N L;; Stella, Tommaso;; Ahmed, Mukhtar;; Alderman, Phillip D;; Basso, Bruno;; Berger, Andres G;; Bindi, Marco;; Bracho-Mujica, Gennady;; Cammarano, Davide;; Chen, Yi;; Dumont, Benjamin;; Rezaei, Ehsan Eyshi;; Fereres, Elias;; Ferrise, Roberto;; Gaiser, Thomas;; Gao, Yujing;; Garcia-Vila, Margarita;; Gayler, Sebastian;; Hochman, Zvi;; Hoogenboom, Gerrit;; Hunt, Leslie A;; Kersebaum, Kurt C;; Nendel, Claas;; Olesen, Jørgen E;; Palosuo, Taru;; Priesack, Eckart;; Pullens, Johannes W M;; Rodríguez, Alfredo;; Rötter, Reimund P;; Ramos, Margarita Ruiz;; Semenov, Mikhail A;; Senapati, Nimai;; Siebert, Stefan;; Srivastava, Amit Kumar;; Stöckle, Claudio;; Supit, Iwan;; Tao, Fulu;; Thorburn, Peter;; Wang, Enli;; Weber, Tobias Karl David;; Xiao, Liujun;; Zhang, Zhao;; Zhao, Chuang;; Zhao, Jin;; Zhao, Zhigan;; Zhu, Yan;; Asseng, Senthold;;handle: 10261/286709 , 11388/355191 , 11388/329749 , 2158/1304741 , 10883/22405 , 10568/129183
Abstract Wheat is the most widely grown food crop, with 761 Mt produced globally in 2020. To meet the expected grain demand by mid-century, wheat breeding strategies must continue to improve upon yield-advancing physiological traits, regardless of climate change impacts. Here, the best performing doubled haploid (DH) crosses with an increased canopy photosynthesis from wheat field experiments in the literature were extrapolated to the global scale with a multi-model ensemble of process-based wheat crop models to estimate global wheat production. The DH field experiments were also used to determine a quantitative relationship between wheat production and solar radiation to estimate genetic yield potential. The multi-model ensemble projected a global annual wheat production of 1050 ± 145 Mt due to the improved canopy photosynthesis, a 37% increase, without expanding cropping area. Achieving this genetic yield potential would meet the lower estimate of the projected grain demand in 2050, albeit with considerable challenges.
Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2022License: CC BY NC NDFull-Text: https://flore.unifi.it/bitstream/2158/1304741/1/Guarin_2022_Environ._Res._Lett._17_124045.pdfData sources: Flore (Florence Research Repository)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129183Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2022Data sources: Repository of the Czech Academy of SciencesPublication Server of Helmholtz Zentrum München (PuSH)Article . 2022Data sources: Publication Server of Helmholtz Zentrum München (PuSH)Göttingen Research Online PublicationsArticle . 2022License: CC BYData sources: Göttingen Research Online PublicationsWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aca77c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 46visibility views 46 download downloads 93 Powered bymore_vert Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2022License: CC BY NC NDFull-Text: https://flore.unifi.it/bitstream/2158/1304741/1/Guarin_2022_Environ._Res._Lett._17_124045.pdfData sources: Flore (Florence Research Repository)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129183Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2022Data sources: Repository of the Czech Academy of SciencesPublication Server of Helmholtz Zentrum München (PuSH)Article . 2022Data sources: Publication Server of Helmholtz Zentrum München (PuSH)Göttingen Research Online PublicationsArticle . 2022License: CC BYData sources: Göttingen Research Online PublicationsWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aca77c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Netherlands, France, Germany, Italy, France, ItalyPublisher:Springer Science and Business Media LLC Funded by:CO | BUILDING A FRAMEWORK FOR ..., DFGCO| BUILDING A FRAMEWORK FOR POTENTIAL KERNEL WEIGHT AND GRAIN NUMBER DETERMINATION IN GRAIN CROPS: RELATIONSHIP BETWEEN EXPANSIN PROTEINS AND YIELD COMPONENTS IN SUNFLOWER (HELIANTHUS ANNUUS L.) ,DFGPierre Martre; Sibylle Dueri; Jose Rafael Guarin; Frank Ewert; Heidi Webber; Daniel Calderini; Gemma Molero; Matthew Reynolds; Daniel Miralles; Guillermo Garcia; Hamish Brown; Mike George; Rob Craigie; Jean-Pierre Cohan; Jean-Charles Deswarte; Gustavo Slafer; Francesco Giunta; Davide Cammarano; Roberto Ferrise; Thomas Gaiser; Yujing Gao; Zvi Hochman; Gerrit Hoogenboom; Leslie A. Hunt; Kurt C. Kersebaum; Claas Nendel; Gloria Padovan; Alex C. Ruane; Amit Kumar Srivastava; Tommaso Stella; Iwan Supit; Peter Thorburn; Enli Wang; Joost Wolf; Chuang Zhao; Zhigan Zhao; Senthold Asseng;Increasing global food demand will require more food production1 without further exceeding the planetary boundaries2 while simultaneously adapting to climate change3. We used an ensemble of wheat simulation models with improved sink and source traits from the highest-yielding wheat genotypes4 to quantify potential yield gains and associated nitrogen requirements. This was explored for current and climate change scenarios across representative sites of major world wheat producing regions. The improved sink and source traits increased yield by 16% with current nitrogen fertilizer applications under both current climate and mid-century climate change scenarios. To achieve the full yield potential-a 52% increase in global average yield under a mid-century high warming climate scenario (RCP8.5), fertilizer use would need to increase fourfold over current use, which would unavoidably lead to higher environmental impacts from wheat production. Our results show the need to improve soil nitrogen availability and nitrogen use efficiency, along with yield potential.
Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2024Flore (Florence Research Repository)Article . 2024Data sources: Flore (Florence Research Repository)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-024-01739-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 18 citations 18 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2024Flore (Florence Research Repository)Article . 2024Data sources: Flore (Florence Research Repository)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-024-01739-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Australia, GermanyPublisher:Elsevier BV Jonathan J. Ojeda; Ehsan Eyshi Rezaei; Tomas A. Remenyi; Mathew A. Webb; Heidi A. Webber; Bahareh Kamali; Rebecca M.B. Harris; Jaclyn N. Brown; Darren B. Kidd; Caroline L. Mohammed; Stefan Siebert; Frank Ewert; Holger Meinke;pmid: 31787284
Input data aggregation affects crop model estimates at the regional level. Previous studies have focused on the impact of aggregating climate data used to compute crop yields. However, little is known about the combined data aggregation effect of climate (DAEc) and soil (DAEs) on irrigation water requirement (IWR) in cool-temperate and spatially heterogeneous environments. The aims of this study were to quantify DAEc and DAEs of model input data and their combined impacts for simulated irrigated and rainfed yield and IWR. The Agricultural Production Systems sIMulator Next Generation model was applied for the period 1998-2017 across areas suitable for potato (Solanum tuberosum L.) in Tasmania, Australia, using data at 5, 15, 25 and 40 km resolution. Spatial variances of inputs and outputs were evaluated by the relative absolute difference (rAD¯) between the aggregated grids and the 5 km grids. Climate data aggregation resulted in a rAD¯ of 0.7-12.1%, with high values especially for areas with pronounced differences in elevation. The rAD¯ of soil data was higher (5.6-26.3%) than rAD¯ of climate data and was mainly affected by aggregation of organic carbon and maximum plant available water capacity (i.e. the difference between field capacity and wilting point in the effective root zone). For yield estimates, the difference among resolutions (5 km vs. 40 km) was more pronounced for rainfed (rAD¯ = 14.5%) than irrigated conditions (rAD¯ = 3.0%). The rAD¯ of IWR was 15.7% when using input data at 40 km resolution. Therefore, reliable simulations of rainfed yield require a higher spatial resolution than simulation of irrigated yields. This needs to be considered when conducting regional modelling studies across Tasmania. This study also highlights the need to separately quantify the impact of input data aggregation on model outputs to inform about data aggregation errors and identify those variables that explain these errors.
Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2020The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.135589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2020The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.135589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu