Advanced search in Research products
Research products
arrow_drop_down
unfold_less Compact
1and
Author ORCID
arrow_drop_down
is
arrow_drop_down
or

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
18 Research products (1 rule applied)
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Iqra Abdullah; orcid Nabeel Ahmad;
    Nabeel Ahmad
    ORCID
    Harvested from ORCID Public Data File

    Nabeel Ahmad in OpenAIRE
    orcid Murid Hussain;
    Murid Hussain
    ORCID
    Harvested from ORCID Public Data File

    Murid Hussain in OpenAIRE
    orcid Ashfaq Ahmed;
    Ashfaq Ahmed
    ORCID
    Harvested from ORCID Public Data File

    Ashfaq Ahmed in OpenAIRE
    +2 Authors

    The torrefaction of lignocellulose biomass was conducted to produce biochar with properties compatible with coal. Two lignocellulose biomasses, pearl millet (PM) and walnut shell (WS), were torrefied at different process temperatures (230-300 °C), residence times (30-90 min), and different compositional biomass blends to improve the characteristics of the biochar product. The resulting biochar product exhibited favorable changes in their properties. The pure biomasses and their blends obtained a high biochar yield (41-91%). The gross calorific value (GCV) ranged from 22 to 27 MJ/kg, showing an increase of 22-59% compared to the raw biomass. The torrefaction temperature had the most notable effect on the biochar quantity and quality. The biochar samples obtained from the torrefaction of different blends showed a higher GCV and other physicochemical characteristics than the pure biomasses. Scanning electron microscopy showed that these products might also be used for other applications.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemospherearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Chemosphere
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemospherearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Chemosphere
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Nabeel Ahmad;
    Nabeel Ahmad
    ORCID
    Harvested from ORCID Public Data File

    Nabeel Ahmad in OpenAIRE
    Nabeel Ahmad; Nasir Shehzad; orcid Usama Ahmed;
    Usama Ahmed
    ORCID
    Harvested from ORCID Public Data File

    Usama Ahmed in OpenAIRE
    +6 Authors

    Abstract Liquefaction of poly-isoprene based rubber (PIR) was performed using ethanol as a solvent for the production of liquid fuel and chemicals. An autoclave batch reactor was used to perform the ethanolysis of PIR at different temperature ranges (250–375 °C), with different ethanol to PIR ratio (0.5:1 to 4:1), and at different reaction times (15–75mins). The experimental results showed that a maximum yield of 86 wt % was achieved at temperature of 325 °C, ethanol to PIR ratio 1/1, and reaction time of 30 min. This liquid oil yield is about 14% higher than the yield obtained from the pyrolysis of PIR at 500 °C and about 10% higher than the yield obtained from hydrothermal liquefaction of PIR at 375 °C. Moreover, the utilization of ethanol in the process was also incorporated and product yields were redefined. Furthermore, ethanol contributed to enhance the quality of liquid-oil, particularly in term of viscosity, acidity, and energy density. Furthermore, the FTIR analysis showed methyl and methylene were most dominating functional groups found in the liquid product and GCMS analysis identified that they were presented by alkenes, aromatics, and alkyls.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Muhammad Bilal; orcid Muhammad Usman;
    Muhammad Usman
    ORCID
    Harvested from ORCID Public Data File

    Muhammad Usman in OpenAIRE
    Usama Ahmed; orcid Hassan Zeb;
    Hassan Zeb
    ORCID
    Harvested from ORCID Public Data File

    Hassan Zeb in OpenAIRE
    +3 Authors

    Abstract An increase in energy demand in the recent decades have created energy shortages that can be fulfilled by the use of fossil fuels. Gasification and reforming techniques are effective methods for producing syngas and hydrogen from natural gas and coal. The two process models have been developed in this study, in which syngas and hydrogen is produced from coal and natural gas. The case 1 relies on the entrained flow gasification unit which is validated by literature data, and then integrated with the reforming process reforming to generate the case 2. The integrated gasifier and reforming model was created to increase H2 output while lowering the total carbon footprints. In case of 2nd model, the hydrogen to carbon monoxide ratio (HCR) is 1.20 which is almost 88% higher than the baseline. Due to the higher HCR in case 2, the overall production of H2 is 55% higher than the case 2. Moreover, the efficiency of case 2 is 18.5% higher which reduces the carbon emissions by 69.6% per unit of hydrogen production compared to case 1.Furthermore, the investment per ton of hydrogen production and hydrogen selling prices in Case 2 is 28.9% lower compared to the case 1 design.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemical Engineering...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Chemical Engineering and Processing - Process Intensification
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemical Engineering...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Chemical Engineering and Processing - Process Intensification
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Um‐e‐Salma Amjad;
    Um‐e‐Salma Amjad
    ORCID
    Harvested from ORCID Public Data File

    Um‐e‐Salma Amjad in OpenAIRE
    orcid Manzar Ishaq;
    Manzar Ishaq
    ORCID
    Harvested from ORCID Public Data File

    Manzar Ishaq in OpenAIRE
    orcid Hamood ur Rehman;
    Hamood ur Rehman
    ORCID
    Harvested from ORCID Public Data File

    Hamood ur Rehman in OpenAIRE
    orcid Nabeel Ahmad;
    Nabeel Ahmad
    ORCID
    Harvested from ORCID Public Data File

    Nabeel Ahmad in OpenAIRE
    +3 Authors

    AbstractPyrolysis of waste polystyrene to generate fuel was carried out to yield pyrolysis oil. For the first time, NiO deposited over ZrO2 carrier as catalyst, was deployed and evaluated in the catalytic pyrolysis. Catalysts based on different loading (2, 5, 10, and 15%) of NiO deposited over ZrO2 carrier were prepared by solution combustion synthesis and tested toward screening of catalytic pyrolysis of PS in semi batch reactor. Based on conversion, yield of oil and low styrene monomer content, the catalytic performance with different loadings was evaluated and optimized. Furthermore, the oil obtained from the best catalysts were analyzed using GC–MS for carbon number distribution, depolymerization reactions, and diesel fuel generation. These catalysts were also characterized using X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), pyridine FTIR, and scanning electron microscopy (SEM) techniques. As compared to thermal pyrolysis, the catalytic pyrolysis process was found to be highly selective toward diesel like fuel generation with minimum styrene monomer formation. Also, 2 and 10% NiO catalyst showed the best catalytic performance in pyrolysis process that could be ascribed to the presence of Lewis and Brönsted acid sites resulting in selectivity for C16 carbon number, diesel fuel generation, and depolymerization reactions.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Progre...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Progress & Sustainable Energy
    Article . 2020 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Progre...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Progress & Sustainable Energy
      Article . 2020 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Nauman Ahmad; Moied Faizan Asif; orcid Nabeel Ahmad;
    Nabeel Ahmad
    ORCID
    Harvested from ORCID Public Data File

    Nabeel Ahmad in OpenAIRE
    orcid Usama Ahmed;
    Usama Ahmed
    ORCID
    Harvested from ORCID Public Data File

    Usama Ahmed in OpenAIRE
    +1 Authors

    An integrated strategy is developed to utilize all three primary components (cellulose, hemicellulose, and lignin) of lignocellulosic biomass for the coproduction of hydrocarbon fuel (5-nonanone) and bio-chemicals (furfural and high purity lignin). After biomass fractionation, (1) 5-nonanone is produced with high yield of 89% using cellulose-derived γ-valerolactone (GVL), which can potentially serve as a platform molecule for the production of liquid hydrocarbon fuels for the transportation sector; (2) furfural, a valuable platform chemical, is produced using hemicellulose; and (3) production of high-purity lignin, which can be used to produce carbon foams or battery anodes. Separation subsystems are designed to effectively recover the solvents for reuse in the conversion processes, which ultimately improves the economic feasibility of the integrated process, resulting in achieving lower minimum selling price (MSP) of $5.47 GGE-1 for 5-nonanone compared to market price. Heat pump is introduced to perform heat integration, which reduces utility requirements more than 85%. Finally, a wide range of techno-economic analysis is performed to highlight the major cost and technological drivers of the integrated process.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Management
    Article . 2023 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Management
      Article . 2023 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Nabeel Ahmad;
    Nabeel Ahmad
    ORCID
    Harvested from ORCID Public Data File

    Nabeel Ahmad in OpenAIRE
    Nauman Ahmad; Usama Ahmed; orcid Abdul Gani Abdul Jameel;
    Abdul Gani Abdul Jameel
    ORCID
    Harvested from ORCID Public Data File

    Abdul Gani Abdul Jameel in OpenAIRE
    +3 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Fuel
    Article . 2023 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Fuel
      Article . 2023 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid K. M. Oajedul Islam;
    K. M. Oajedul Islam
    ORCID
    Harvested from ORCID Public Data File

    K. M. Oajedul Islam in OpenAIRE
    orcid Nabeel Ahmad;
    Nabeel Ahmad
    ORCID
    Harvested from ORCID Public Data File

    Nabeel Ahmad in OpenAIRE
    Usama Ahmed; Mohammad Nahid Siddiqui; +2 Authors

    AbstractMicrowave (MW)‐assisted catalytic pyrolysis represents a promising method for transforming petroleum‐based plastic waste into valuable chemicals, offering a pathway towards more sustainable circular economy. In this study, catalytic pyrolysis of low‐density polyethylene (LDPE) was conducted under MW irradiation. The influence of various catalyst types (HZSM‐5, Ga/ZSM‐5, Ga/Ni/ZSM‐5, Ga/Co/ZSM‐5, and Ga/Cu/ZSM‐5) on product yield and distribution was examined. The results revealed that the Ga/ZSM‐5 catalyst yielded the maximum liquid oil, approximately 41%. Ga/Ni/ZSM‐5 performed excellently in the production of long‐chain olefins, constituting about 27% of the liquid fraction. However, Ga/Co/ZSM‐5 led to the production of heavy pyrolysis oil containing nearly 25% long‐chain paraffins, rendering it unsuitable for producing high‐value chemicals. Conversely, the Ga/Cu/ZSM‐5 catalyst yielded an aromatic‐rich pyrolysis oil, with benzene derivatives constituting approximately 90% of the liquid oil fraction, thus proving to be a suitable catalyst for the intended application. The liquid product distribution was compared with a petroleum assay by SimDist, and this suggested that utilizing the HZSM‐5 catalyst could yield an 86.4% naphtha fraction. The study also revealed that the Ga/Cu/ZSM‐5 catalyst generated the largest amounts of hydrogen and syngas, as determined by a MicroGC analysis of the gas products. This catalyst also exhibited the maximum coke deposition (1.35%) postreaction, which was attributed to its high aromatic hydrocarbon content in the pyrolysis oil and maximal hydrogen release. A comparison of fresh and spent catalyst properties was conducted to gain insights into catalyst activity and to correlate the effects of metal doping on product distribution. These findings underscore the potential of MW‐assisted catalytic pyrolysis, particularly with the Ga/Cu/ZSM‐5 catalyst, for the efficient conversion of plastic waste into valuable chemicals, thereby contributing to sustainable resource utilization and environmental conservation.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biofuels Bioproducts...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biofuels Bioproducts and Biorefining
    Article . 2024 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biofuels Bioproducts...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Biofuels Bioproducts and Biorefining
      Article . 2024 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Usama Ahmed;
    Usama Ahmed
    ORCID
    Harvested from ORCID Public Data File

    Usama Ahmed in OpenAIRE
    orcid Nabeel Ahmad;
    Nabeel Ahmad
    ORCID
    Harvested from ORCID Public Data File

    Nabeel Ahmad in OpenAIRE
    orcid Ali Rauf;
    Ali Rauf
    ORCID
    Harvested from ORCID Public Data File

    Ali Rauf in OpenAIRE
    orcid Md. Selim Arif Sher Shah;
    Md. Selim Arif Sher Shah
    ORCID
    Harvested from ORCID Public Data File

    Md. Selim Arif Sher Shah in OpenAIRE
    +2 Authors

    Abstract The elevated energy demands from past decades has created the energy gaps which can mainly be fulfilled through the consumption of natural fossil fuels but at the expense of increased greenhouse gas emissions. Therefore, the need of clean and sustainable options to meet energy gaps have increased significantly. Gasification and steam methane reforming are the efficient technologies which resourcefully produce the syngas and hydrogen from coal and natural gas, respectively. The syngas and hydrogen can be further utilized to generate power or other Fischer Tropsch chemicals. In this study, two process models are developed and technically compared to analyze the production capacity of syngas and hydrogen. First model is developed based on conventional entrained flow gasification process which is validated with data provided by DOE followed by its integration with the reforming process that leads to the second model. The integrated gasification and reforming process model is developed to maximize the hydrogen production while reducing the overall carbon dioxide emissions. Furthermore, the integrated model eradicates the possibility of reformer’s catalyst deactivation due to significant amount of H2S present in the coal derived syngas. It has been seen from results that updated model offers 37% increase in H2/CO ratio, 10% increase in cold gas efficiency (CGE), 25% increase in overall H2 production, and 13% reduction in CO2 emission per unit amount of hydrogen production compared to base case model. Furthermore, economic analysis indicated 8% reduction in cost for case 2 while presenting 7% enhanced hydrogen contents.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Fuel
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Fuel
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Usama Ahmed; Nauman Ahmad; Nauman Ahmad; orcid Nabeel Ahmad;
    Nabeel Ahmad
    ORCID
    Harvested from ORCID Public Data File

    Nabeel Ahmad in OpenAIRE

    Abstract We report a strategy for production of 5-nonanone which is a bio-based platform chemical that can be produced in large quantity from a variety of lignocellulosic biomass sources. In this strategy, the cellulose and hemicellulose fractions of lignocellulosic biomass are catalytically converted to γ -valerolactone (GVL) using the biomass derived GVL as a solvent. To generate the integrated strategy, we develop separation subsystems to achieve high purity of product. Importantly, GVL can be upgraded to 5-nonanone with high yield in a single reactor using a dual catalyst bed of Pd/Nb2O5 plus ceria-zirconia. We design a heat exchanger network to satisfy the total energy requirements of the integrated process via combusting lignin fraction of biomass. Economic feasibility of the process is investigated using discounted cash flow analysis.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable Energy
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable Energy
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Wan Mohd Ashri Wan Daud; orcid Nabeel Ahmad;
    Nabeel Ahmad
    ORCID
    Harvested from ORCID Public Data File

    Nabeel Ahmad in OpenAIRE
    Nabeel Ahmad; Faisal Abnisa;

    Abstract In this study, the natural rubber (NR) was liquefied to produce liquid fuels using hydrous pyrolysis technique. The study was performed in the autoclave batch reactor at different temperatures (300–400 °C), with different water to natural rubber mass ratios (1:1–5:1) and different reaction times (15–75 min). The effect of different parameters then was evaluated on the liquid product in term of quantity and quality. The results showed that the highest liquid yield of 76 wt% was obtained at temperature, H2O/material mass ratio and time of 375 °C, 3:1 and 30 min respectively. Among the parameters, temperature was found to be the most important parameter, showing a notable positive effect on the liquid oil quality and quantity. The characterization results showed that the oil had high energy density, low oxygen and sulfur contents, and non-acidic. The GC–MS analysis showed that the obtained oil was dominated by alkenes, aromatics and alkyls. From all characteristic results it showed that the oil from NR was more suitable to be used as fuel compare to the oil derived from scrap tire, where the study on hydrous pyrolysis of scrap tire was also provided in this manuscript as comparative study. In addition, the production of oil from the hydrous pyrolysis of NR in Malaysia could add to the energy potential about 15 PJ/year or equivalent to 2.5 million barrels of oil per year.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Fuel
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Fuel
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • chevron_left
  • 1
  • 2
  • chevron_right
Powered by OpenAIRE graph
We use cookies
This website uses essential cookies to ensure its proper operation and tracking cookies to understand how you interact with it. The latter will be set only upon approval.

Read more about our Cookies policy.