- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Elsevier BV Authors: Crozier, C; Morstyn, T; McCulloch, M;Abstract A rapid increase in the number of electric vehicles is expected in coming years, driven by government incentives and falling battery prices. Charging these vehicles will add significant load to the electricity network, and it is important to understand the impact this will have on both the transmission and distribution level systems, and how smart charging can alleviate it. Here we analyse the effects that charging a large electric vehicle fleet would have on the power network, taking into account the spatial heterogeneity of vehicle use, electricity demand, and network structure. A conditional probability based method is used to model uncontrolled charging demand, and convex optimisation is used to model smart charging. Stochasticity is captured using Monte Carlo simulations. It is shown that for Great Britain’s power system, smart charging can simultaneously eliminate the need for additional generation infrastructure required with 100% electric vehicle adoption, while also reducing the percentage of distribution networks which would require reinforcement from 28% to 9%. Discussion is included as to how far these results can be extended to other power systems.
Applied Energy arrow_drop_down Oxford University Research ArchiveArticle . 2020License: CC BY NC NDData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.114973&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 130 citations 130 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Energy arrow_drop_down Oxford University Research ArchiveArticle . 2020License: CC BY NC NDData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.114973&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Elsevier BV Authors: Crozier, C; Morstyn, T; McCulloch, M;Abstract A rapid increase in the number of electric vehicles is expected in coming years, driven by government incentives and falling battery prices. Charging these vehicles will add significant load to the electricity network, and it is important to understand the impact this will have on both the transmission and distribution level systems, and how smart charging can alleviate it. Here we analyse the effects that charging a large electric vehicle fleet would have on the power network, taking into account the spatial heterogeneity of vehicle use, electricity demand, and network structure. A conditional probability based method is used to model uncontrolled charging demand, and convex optimisation is used to model smart charging. Stochasticity is captured using Monte Carlo simulations. It is shown that for Great Britain’s power system, smart charging can simultaneously eliminate the need for additional generation infrastructure required with 100% electric vehicle adoption, while also reducing the percentage of distribution networks which would require reinforcement from 28% to 9%. Discussion is included as to how far these results can be extended to other power systems.
Applied Energy arrow_drop_down Oxford University Research ArchiveArticle . 2020License: CC BY NC NDData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.114973&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 130 citations 130 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Energy arrow_drop_down Oxford University Research ArchiveArticle . 2020License: CC BY NC NDData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.114973&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Elsevier BV Authors: Crozier, C; Morstyn, T; Deakin, M; McCulloch, M;Abstract In recent years, there has been growing interest in AC vehicle-to-grid charging in residential networks. Bi-directional smart charging offers additional flexibility compared to uni-directional smart chargers, but are expensive to install and implement. This paper investigates the costs and benefits to the distribution network that bi-directional charging provides, relative to uni-directional charging. Benefit is quantified in terms of the reduction in the peak demand of the network, and costs are quantified with the increase in throughput of the vehicles’ batteries and the increase in electrical losses in the system. Measured data and representative networks are used to construct two representative case studies of residential charging, one in the UK and one in Texas, US.
Applied Energy arrow_drop_down Oxford University Research ArchiveArticle . 2020License: CC BY NC NDData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.114214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Energy arrow_drop_down Oxford University Research ArchiveArticle . 2020License: CC BY NC NDData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.114214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Elsevier BV Authors: Crozier, C; Morstyn, T; Deakin, M; McCulloch, M;Abstract In recent years, there has been growing interest in AC vehicle-to-grid charging in residential networks. Bi-directional smart charging offers additional flexibility compared to uni-directional smart chargers, but are expensive to install and implement. This paper investigates the costs and benefits to the distribution network that bi-directional charging provides, relative to uni-directional charging. Benefit is quantified in terms of the reduction in the peak demand of the network, and costs are quantified with the increase in throughput of the vehicles’ batteries and the increase in electrical losses in the system. Measured data and representative networks are used to construct two representative case studies of residential charging, one in the UK and one in Texas, US.
Applied Energy arrow_drop_down Oxford University Research ArchiveArticle . 2020License: CC BY NC NDData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.114214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Energy arrow_drop_down Oxford University Research ArchiveArticle . 2020License: CC BY NC NDData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.114214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Constance Crozier; Christopher Quarton; Noramalina Mansor; Dario Pagnano; Ian Llewellyn;In this paper, we explore how effectively renewable generation can be used to meet a country’s electricity demands. We consider a range of different generation mixes and capacities, as well as the use of energy storage. First, we introduce a new open-source model that uses hourly wind speed and solar irradiance data to estimate the output of a renewable electricity generator at a specific location. Then, we construct a case study of the Great Britain (GB) electricity system as an example using historic hourly demand and weather data. Three specific sources of renewable generation are considered: offshore wind, onshore wind, and solar PV. Li-ion batteries are considered as the form of electricity storage. We demonstrate that the ability of a renewables-based electricity system to meet expected demand profiles can be increased by optimising the ratio of onshore wind, offshore wind and solar PV. Additionally, we show how including Li-ion battery storage can reduce overall generation needs, therefore lowering system costs. For the GB system, we explore how the residual load that would need to be met with other forms of flexibility, such as dispatchable generation sources or demand-side response, varies for different ratios of renewable generation and storage.
Electricity arrow_drop_down ElectricityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2673-4826/3/1/2/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electricity3010002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Electricity arrow_drop_down ElectricityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2673-4826/3/1/2/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electricity3010002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Constance Crozier; Christopher Quarton; Noramalina Mansor; Dario Pagnano; Ian Llewellyn;In this paper, we explore how effectively renewable generation can be used to meet a country’s electricity demands. We consider a range of different generation mixes and capacities, as well as the use of energy storage. First, we introduce a new open-source model that uses hourly wind speed and solar irradiance data to estimate the output of a renewable electricity generator at a specific location. Then, we construct a case study of the Great Britain (GB) electricity system as an example using historic hourly demand and weather data. Three specific sources of renewable generation are considered: offshore wind, onshore wind, and solar PV. Li-ion batteries are considered as the form of electricity storage. We demonstrate that the ability of a renewables-based electricity system to meet expected demand profiles can be increased by optimising the ratio of onshore wind, offshore wind and solar PV. Additionally, we show how including Li-ion battery storage can reduce overall generation needs, therefore lowering system costs. For the GB system, we explore how the residual load that would need to be met with other forms of flexibility, such as dispatchable generation sources or demand-side response, varies for different ratios of renewable generation and storage.
Electricity arrow_drop_down ElectricityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2673-4826/3/1/2/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electricity3010002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Electricity arrow_drop_down ElectricityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2673-4826/3/1/2/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electricity3010002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2018 United KingdomPublisher:IEEE Authors: Crozier, C.; Apostolopoulou, D.; McCulloch, M.;Accurately predicting the behaviour of electric vehicles is going to be imperative for network operators. In order for vehicles to participate in either smart charging schemes or providing grid services, their availability and charge requirements must be forecasted. Their relative novelty means that data concerning electric vehicles is scarce and biased, however we have been collecting data on conventional vehicles for many years. This paper uses cluster analysis of travel survey data from the UK to identify typical conventional vehicle usage profiles. To this end, we determine the feature vector, introduce an appropriate distance metric, and choose a number of clusters. Five clusters are identified, and their suitability for electrification is discussed. A smaller data set of electric vehicles is then used to compare the current electric fleet behaviour with the conventional one.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/isgteurope.2018.8571707&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/isgteurope.2018.8571707&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2018 United KingdomPublisher:IEEE Authors: Crozier, C.; Apostolopoulou, D.; McCulloch, M.;Accurately predicting the behaviour of electric vehicles is going to be imperative for network operators. In order for vehicles to participate in either smart charging schemes or providing grid services, their availability and charge requirements must be forecasted. Their relative novelty means that data concerning electric vehicles is scarce and biased, however we have been collecting data on conventional vehicles for many years. This paper uses cluster analysis of travel survey data from the UK to identify typical conventional vehicle usage profiles. To this end, we determine the feature vector, introduce an appropriate distance metric, and choose a number of clusters. Five clusters are identified, and their suitability for electrification is discussed. A smaller data set of electric vehicles is then used to compare the current electric fleet behaviour with the conventional one.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/isgteurope.2018.8571707&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/isgteurope.2018.8571707&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2021Publisher:IEEE Authors: Constance Crozier; Kyri Baker;https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/pesgm4...Conference object . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm46819.2021.9637953&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/pesgm4...Conference object . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm46819.2021.9637953&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2021Publisher:IEEE Authors: Constance Crozier; Kyri Baker;https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/pesgm4...Conference object . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm46819.2021.9637953&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/pesgm4...Conference object . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm46819.2021.9637953&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Constance Crozier; Kyri Baker;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Constance Crozier; Kyri Baker;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2021Publisher:Elsevier BV Funded by:NSF | MRI Collaborative Consort..., NSF | MRI Collaborative Consort...NSF| MRI Collaborative Consortium: Acquisition of a Shared Supercomputer by the Rocky Mountain Advanced Computing Consortium ,NSF| MRI Collaborative Consortium: Acquisition of a Shared Supercomputer by the Rocky Mountain Advanced Computing ConsortiumAuthors: Aisling Pigott; Constance Crozier; Kyri Baker; Zoltan Nagy;Increasing amounts of distributed generation in distribution networks can provide both challenges and opportunities for voltage regulation across the network. Intelligent control of smart inverters and other smart building energy management systems can be leveraged to alleviate these issues. GridLearn is a multiagent reinforcement learning platform that incorporates both building energy models and power flow models to achieve grid level goals, by controlling behind-the-meter resources. This study demonstrates how multi-agent reinforcement learning can preserve building owner privacy and comfort while pursuing grid-level objectives. Building upon the CityLearn framework which considers RL for building-level goals, this work expands the framework to a network setting where grid-level goals are additionally considered. As a case study, we consider voltage regulation on the IEEE-33 bus network using controllable building loads, energy storage, and smart inverters. The results show that the RL agents nominally reduce instances of undervoltages and reduce instances of overvoltages by 34%.
https://dx.doi.org/1... arrow_drop_down Electric Power Systems ResearchArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.epsr.2022.108521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down Electric Power Systems ResearchArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.epsr.2022.108521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2021Publisher:Elsevier BV Funded by:NSF | MRI Collaborative Consort..., NSF | MRI Collaborative Consort...NSF| MRI Collaborative Consortium: Acquisition of a Shared Supercomputer by the Rocky Mountain Advanced Computing Consortium ,NSF| MRI Collaborative Consortium: Acquisition of a Shared Supercomputer by the Rocky Mountain Advanced Computing ConsortiumAuthors: Aisling Pigott; Constance Crozier; Kyri Baker; Zoltan Nagy;Increasing amounts of distributed generation in distribution networks can provide both challenges and opportunities for voltage regulation across the network. Intelligent control of smart inverters and other smart building energy management systems can be leveraged to alleviate these issues. GridLearn is a multiagent reinforcement learning platform that incorporates both building energy models and power flow models to achieve grid level goals, by controlling behind-the-meter resources. This study demonstrates how multi-agent reinforcement learning can preserve building owner privacy and comfort while pursuing grid-level objectives. Building upon the CityLearn framework which considers RL for building-level goals, this work expands the framework to a network setting where grid-level goals are additionally considered. As a case study, we consider voltage regulation on the IEEE-33 bus network using controllable building loads, energy storage, and smart inverters. The results show that the RL agents nominally reduce instances of undervoltages and reduce instances of overvoltages by 34%.
https://dx.doi.org/1... arrow_drop_down Electric Power Systems ResearchArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.epsr.2022.108521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down Electric Power Systems ResearchArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.epsr.2022.108521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Constance Crozier; Kyri Baker; Bridget Toomey;Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segan.2022.100628&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segan.2022.100628&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Constance Crozier; Kyri Baker; Bridget Toomey;Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segan.2022.100628&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segan.2022.100628&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Preprint , Other literature type 2019Embargo end date: 01 Jan 2019 United KingdomPublisher:IEEE Funded by:UKRI | Peer-to-Peer Energy Tradi..., UKRI | A Networked Market Platfo...UKRI| Peer-to-Peer Energy Trading and Sharing - 3M (Multi-times, Multi-scales, Multi-qualities) ,UKRI| A Networked Market Platform for Electric Vehicle Smart ChargingAuthors: Han, L; Morstyn, T; Crozier, C; McCulloch, M;Among the various market structures under peer-to-peer energy sharing, one model based on cooperative game theory provides clear incentives for prosumers to collaboratively schedule their energy resources. The computational complexity of this model, however, increases exponentially with the number of participants. To address this issue, this paper proposes the application of K-means clustering to the energy profiles following the grand coalition optimization. The cooperative model is run with the "clustered players" to compute their payoff allocations, which are then further distributed among the prosumers within each cluster. Case studies show that the proposed method can significantly improve the scalability of the cooperative scheme while maintaining a high level of financial incentives for the prosumers. 6 pages, 4 figures, 2 tables. Accepted to the 13th IEEE PES PowerTech Conference, 23-27 June 2019, Milano, Italy
http://arxiv.org/pdf... arrow_drop_down Oxford University Research ArchiveConference object . 2020Data sources: Oxford University Research Archivehttps://doi.org/10.1109/ptc.20...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2019License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ptc.2019.8810558&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert http://arxiv.org/pdf... arrow_drop_down Oxford University Research ArchiveConference object . 2020Data sources: Oxford University Research Archivehttps://doi.org/10.1109/ptc.20...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2019License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ptc.2019.8810558&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Preprint , Other literature type 2019Embargo end date: 01 Jan 2019 United KingdomPublisher:IEEE Funded by:UKRI | Peer-to-Peer Energy Tradi..., UKRI | A Networked Market Platfo...UKRI| Peer-to-Peer Energy Trading and Sharing - 3M (Multi-times, Multi-scales, Multi-qualities) ,UKRI| A Networked Market Platform for Electric Vehicle Smart ChargingAuthors: Han, L; Morstyn, T; Crozier, C; McCulloch, M;Among the various market structures under peer-to-peer energy sharing, one model based on cooperative game theory provides clear incentives for prosumers to collaboratively schedule their energy resources. The computational complexity of this model, however, increases exponentially with the number of participants. To address this issue, this paper proposes the application of K-means clustering to the energy profiles following the grand coalition optimization. The cooperative model is run with the "clustered players" to compute their payoff allocations, which are then further distributed among the prosumers within each cluster. Case studies show that the proposed method can significantly improve the scalability of the cooperative scheme while maintaining a high level of financial incentives for the prosumers. 6 pages, 4 figures, 2 tables. Accepted to the 13th IEEE PES PowerTech Conference, 23-27 June 2019, Milano, Italy
http://arxiv.org/pdf... arrow_drop_down Oxford University Research ArchiveConference object . 2020Data sources: Oxford University Research Archivehttps://doi.org/10.1109/ptc.20...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2019License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ptc.2019.8810558&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert http://arxiv.org/pdf... arrow_drop_down Oxford University Research ArchiveConference object . 2020Data sources: Oxford University Research Archivehttps://doi.org/10.1109/ptc.20...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2019License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ptc.2019.8810558&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Preprint 2018Embargo end date: 01 Jan 2017Publisher:IEEE Authors: Malcolm McCulloch; Constance Crozier; Dimitra Apostolopoulou;Accurately predicting the future power demand of electric vehicles is important for developing policy and industrial strategy. Here we propose a method to create a representative set of electricity demand profiles using survey data from conventional vehicles. This is achieved by developing a model which maps journey and vehicle parameters to an energy consumption, and applying it individually to the entire data set. As a case study the National Travel Survey was used to create a set of profiles representing an entirely electric UK fleet of vehicles. This allowed prediction of the required electricity demand and sizing of the necessary vehicle batteries. Also, by inferring location information from the data, the effectiveness of various charging strategies was assessed. These results will be useful in both National planning, and as the inputs to further research on the impact of electric vehicles.
http://arxiv.org/pdf... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.23919/pscc.2018.8450584&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 8 citations 8 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert http://arxiv.org/pdf... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.23919/pscc.2018.8450584&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Preprint 2018Embargo end date: 01 Jan 2017Publisher:IEEE Authors: Malcolm McCulloch; Constance Crozier; Dimitra Apostolopoulou;Accurately predicting the future power demand of electric vehicles is important for developing policy and industrial strategy. Here we propose a method to create a representative set of electricity demand profiles using survey data from conventional vehicles. This is achieved by developing a model which maps journey and vehicle parameters to an energy consumption, and applying it individually to the entire data set. As a case study the National Travel Survey was used to create a set of profiles representing an entirely electric UK fleet of vehicles. This allowed prediction of the required electricity demand and sizing of the necessary vehicle batteries. Also, by inferring location information from the data, the effectiveness of various charging strategies was assessed. These results will be useful in both National planning, and as the inputs to further research on the impact of electric vehicles.
http://arxiv.org/pdf... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.23919/pscc.2018.8450584&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 8 citations 8 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert http://arxiv.org/pdf... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.23919/pscc.2018.8450584&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Elsevier BV Authors: Crozier, C; Morstyn, T; McCulloch, M;Abstract A rapid increase in the number of electric vehicles is expected in coming years, driven by government incentives and falling battery prices. Charging these vehicles will add significant load to the electricity network, and it is important to understand the impact this will have on both the transmission and distribution level systems, and how smart charging can alleviate it. Here we analyse the effects that charging a large electric vehicle fleet would have on the power network, taking into account the spatial heterogeneity of vehicle use, electricity demand, and network structure. A conditional probability based method is used to model uncontrolled charging demand, and convex optimisation is used to model smart charging. Stochasticity is captured using Monte Carlo simulations. It is shown that for Great Britain’s power system, smart charging can simultaneously eliminate the need for additional generation infrastructure required with 100% electric vehicle adoption, while also reducing the percentage of distribution networks which would require reinforcement from 28% to 9%. Discussion is included as to how far these results can be extended to other power systems.
Applied Energy arrow_drop_down Oxford University Research ArchiveArticle . 2020License: CC BY NC NDData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.114973&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 130 citations 130 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Energy arrow_drop_down Oxford University Research ArchiveArticle . 2020License: CC BY NC NDData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.114973&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Elsevier BV Authors: Crozier, C; Morstyn, T; McCulloch, M;Abstract A rapid increase in the number of electric vehicles is expected in coming years, driven by government incentives and falling battery prices. Charging these vehicles will add significant load to the electricity network, and it is important to understand the impact this will have on both the transmission and distribution level systems, and how smart charging can alleviate it. Here we analyse the effects that charging a large electric vehicle fleet would have on the power network, taking into account the spatial heterogeneity of vehicle use, electricity demand, and network structure. A conditional probability based method is used to model uncontrolled charging demand, and convex optimisation is used to model smart charging. Stochasticity is captured using Monte Carlo simulations. It is shown that for Great Britain’s power system, smart charging can simultaneously eliminate the need for additional generation infrastructure required with 100% electric vehicle adoption, while also reducing the percentage of distribution networks which would require reinforcement from 28% to 9%. Discussion is included as to how far these results can be extended to other power systems.
Applied Energy arrow_drop_down Oxford University Research ArchiveArticle . 2020License: CC BY NC NDData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.114973&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 130 citations 130 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Energy arrow_drop_down Oxford University Research ArchiveArticle . 2020License: CC BY NC NDData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.114973&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Elsevier BV Authors: Crozier, C; Morstyn, T; Deakin, M; McCulloch, M;Abstract In recent years, there has been growing interest in AC vehicle-to-grid charging in residential networks. Bi-directional smart charging offers additional flexibility compared to uni-directional smart chargers, but are expensive to install and implement. This paper investigates the costs and benefits to the distribution network that bi-directional charging provides, relative to uni-directional charging. Benefit is quantified in terms of the reduction in the peak demand of the network, and costs are quantified with the increase in throughput of the vehicles’ batteries and the increase in electrical losses in the system. Measured data and representative networks are used to construct two representative case studies of residential charging, one in the UK and one in Texas, US.
Applied Energy arrow_drop_down Oxford University Research ArchiveArticle . 2020License: CC BY NC NDData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.114214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Energy arrow_drop_down Oxford University Research ArchiveArticle . 2020License: CC BY NC NDData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.114214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Elsevier BV Authors: Crozier, C; Morstyn, T; Deakin, M; McCulloch, M;Abstract In recent years, there has been growing interest in AC vehicle-to-grid charging in residential networks. Bi-directional smart charging offers additional flexibility compared to uni-directional smart chargers, but are expensive to install and implement. This paper investigates the costs and benefits to the distribution network that bi-directional charging provides, relative to uni-directional charging. Benefit is quantified in terms of the reduction in the peak demand of the network, and costs are quantified with the increase in throughput of the vehicles’ batteries and the increase in electrical losses in the system. Measured data and representative networks are used to construct two representative case studies of residential charging, one in the UK and one in Texas, US.
Applied Energy arrow_drop_down Oxford University Research ArchiveArticle . 2020License: CC BY NC NDData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.114214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Energy arrow_drop_down Oxford University Research ArchiveArticle . 2020License: CC BY NC NDData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.114214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Constance Crozier; Christopher Quarton; Noramalina Mansor; Dario Pagnano; Ian Llewellyn;In this paper, we explore how effectively renewable generation can be used to meet a country’s electricity demands. We consider a range of different generation mixes and capacities, as well as the use of energy storage. First, we introduce a new open-source model that uses hourly wind speed and solar irradiance data to estimate the output of a renewable electricity generator at a specific location. Then, we construct a case study of the Great Britain (GB) electricity system as an example using historic hourly demand and weather data. Three specific sources of renewable generation are considered: offshore wind, onshore wind, and solar PV. Li-ion batteries are considered as the form of electricity storage. We demonstrate that the ability of a renewables-based electricity system to meet expected demand profiles can be increased by optimising the ratio of onshore wind, offshore wind and solar PV. Additionally, we show how including Li-ion battery storage can reduce overall generation needs, therefore lowering system costs. For the GB system, we explore how the residual load that would need to be met with other forms of flexibility, such as dispatchable generation sources or demand-side response, varies for different ratios of renewable generation and storage.
Electricity arrow_drop_down ElectricityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2673-4826/3/1/2/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electricity3010002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Electricity arrow_drop_down ElectricityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2673-4826/3/1/2/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electricity3010002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Constance Crozier; Christopher Quarton; Noramalina Mansor; Dario Pagnano; Ian Llewellyn;In this paper, we explore how effectively renewable generation can be used to meet a country’s electricity demands. We consider a range of different generation mixes and capacities, as well as the use of energy storage. First, we introduce a new open-source model that uses hourly wind speed and solar irradiance data to estimate the output of a renewable electricity generator at a specific location. Then, we construct a case study of the Great Britain (GB) electricity system as an example using historic hourly demand and weather data. Three specific sources of renewable generation are considered: offshore wind, onshore wind, and solar PV. Li-ion batteries are considered as the form of electricity storage. We demonstrate that the ability of a renewables-based electricity system to meet expected demand profiles can be increased by optimising the ratio of onshore wind, offshore wind and solar PV. Additionally, we show how including Li-ion battery storage can reduce overall generation needs, therefore lowering system costs. For the GB system, we explore how the residual load that would need to be met with other forms of flexibility, such as dispatchable generation sources or demand-side response, varies for different ratios of renewable generation and storage.
Electricity arrow_drop_down ElectricityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2673-4826/3/1/2/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electricity3010002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Electricity arrow_drop_down ElectricityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2673-4826/3/1/2/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electricity3010002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2018 United KingdomPublisher:IEEE Authors: Crozier, C.; Apostolopoulou, D.; McCulloch, M.;Accurately predicting the behaviour of electric vehicles is going to be imperative for network operators. In order for vehicles to participate in either smart charging schemes or providing grid services, their availability and charge requirements must be forecasted. Their relative novelty means that data concerning electric vehicles is scarce and biased, however we have been collecting data on conventional vehicles for many years. This paper uses cluster analysis of travel survey data from the UK to identify typical conventional vehicle usage profiles. To this end, we determine the feature vector, introduce an appropriate distance metric, and choose a number of clusters. Five clusters are identified, and their suitability for electrification is discussed. A smaller data set of electric vehicles is then used to compare the current electric fleet behaviour with the conventional one.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/isgteurope.2018.8571707&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/isgteurope.2018.8571707&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2018 United KingdomPublisher:IEEE Authors: Crozier, C.; Apostolopoulou, D.; McCulloch, M.;Accurately predicting the behaviour of electric vehicles is going to be imperative for network operators. In order for vehicles to participate in either smart charging schemes or providing grid services, their availability and charge requirements must be forecasted. Their relative novelty means that data concerning electric vehicles is scarce and biased, however we have been collecting data on conventional vehicles for many years. This paper uses cluster analysis of travel survey data from the UK to identify typical conventional vehicle usage profiles. To this end, we determine the feature vector, introduce an appropriate distance metric, and choose a number of clusters. Five clusters are identified, and their suitability for electrification is discussed. A smaller data set of electric vehicles is then used to compare the current electric fleet behaviour with the conventional one.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/isgteurope.2018.8571707&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/isgteurope.2018.8571707&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2021Publisher:IEEE Authors: Constance Crozier; Kyri Baker;https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/pesgm4...Conference object . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm46819.2021.9637953&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/pesgm4...Conference object . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm46819.2021.9637953&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2021Publisher:IEEE Authors: Constance Crozier; Kyri Baker;https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/pesgm4...Conference object . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm46819.2021.9637953&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/pesgm4...Conference object . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm46819.2021.9637953&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Constance Crozier; Kyri Baker;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Constance Crozier; Kyri Baker;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2021Publisher:Elsevier BV Funded by:NSF | MRI Collaborative Consort..., NSF | MRI Collaborative Consort...NSF| MRI Collaborative Consortium: Acquisition of a Shared Supercomputer by the Rocky Mountain Advanced Computing Consortium ,NSF| MRI Collaborative Consortium: Acquisition of a Shared Supercomputer by the Rocky Mountain Advanced Computing ConsortiumAuthors: Aisling Pigott; Constance Crozier; Kyri Baker; Zoltan Nagy;Increasing amounts of distributed generation in distribution networks can provide both challenges and opportunities for voltage regulation across the network. Intelligent control of smart inverters and other smart building energy management systems can be leveraged to alleviate these issues. GridLearn is a multiagent reinforcement learning platform that incorporates both building energy models and power flow models to achieve grid level goals, by controlling behind-the-meter resources. This study demonstrates how multi-agent reinforcement learning can preserve building owner privacy and comfort while pursuing grid-level objectives. Building upon the CityLearn framework which considers RL for building-level goals, this work expands the framework to a network setting where grid-level goals are additionally considered. As a case study, we consider voltage regulation on the IEEE-33 bus network using controllable building loads, energy storage, and smart inverters. The results show that the RL agents nominally reduce instances of undervoltages and reduce instances of overvoltages by 34%.
https://dx.doi.org/1... arrow_drop_down Electric Power Systems ResearchArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.epsr.2022.108521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down Electric Power Systems ResearchArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.epsr.2022.108521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2021Publisher:Elsevier BV Funded by:NSF | MRI Collaborative Consort..., NSF | MRI Collaborative Consort...NSF| MRI Collaborative Consortium: Acquisition of a Shared Supercomputer by the Rocky Mountain Advanced Computing Consortium ,NSF| MRI Collaborative Consortium: Acquisition of a Shared Supercomputer by the Rocky Mountain Advanced Computing ConsortiumAuthors: Aisling Pigott; Constance Crozier; Kyri Baker; Zoltan Nagy;Increasing amounts of distributed generation in distribution networks can provide both challenges and opportunities for voltage regulation across the network. Intelligent control of smart inverters and other smart building energy management systems can be leveraged to alleviate these issues. GridLearn is a multiagent reinforcement learning platform that incorporates both building energy models and power flow models to achieve grid level goals, by controlling behind-the-meter resources. This study demonstrates how multi-agent reinforcement learning can preserve building owner privacy and comfort while pursuing grid-level objectives. Building upon the CityLearn framework which considers RL for building-level goals, this work expands the framework to a network setting where grid-level goals are additionally considered. As a case study, we consider voltage regulation on the IEEE-33 bus network using controllable building loads, energy storage, and smart inverters. The results show that the RL agents nominally reduce instances of undervoltages and reduce instances of overvoltages by 34%.
https://dx.doi.org/1... arrow_drop_down Electric Power Systems ResearchArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.epsr.2022.108521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down Electric Power Systems ResearchArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.epsr.2022.108521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Constance Crozier; Kyri Baker; Bridget Toomey;Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segan.2022.100628&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segan.2022.100628&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Constance Crozier; Kyri Baker; Bridget Toomey;Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segan.2022.100628&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segan.2022.100628&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Preprint , Other literature type 2019Embargo end date: 01 Jan 2019 United KingdomPublisher:IEEE Funded by:UKRI | Peer-to-Peer Energy Tradi..., UKRI | A Networked Market Platfo...UKRI| Peer-to-Peer Energy Trading and Sharing - 3M (Multi-times, Multi-scales, Multi-qualities) ,UKRI| A Networked Market Platform for Electric Vehicle Smart ChargingAuthors: Han, L; Morstyn, T; Crozier, C; McCulloch, M;Among the various market structures under peer-to-peer energy sharing, one model based on cooperative game theory provides clear incentives for prosumers to collaboratively schedule their energy resources. The computational complexity of this model, however, increases exponentially with the number of participants. To address this issue, this paper proposes the application of K-means clustering to the energy profiles following the grand coalition optimization. The cooperative model is run with the "clustered players" to compute their payoff allocations, which are then further distributed among the prosumers within each cluster. Case studies show that the proposed method can significantly improve the scalability of the cooperative scheme while maintaining a high level of financial incentives for the prosumers. 6 pages, 4 figures, 2 tables. Accepted to the 13th IEEE PES PowerTech Conference, 23-27 June 2019, Milano, Italy
http://arxiv.org/pdf... arrow_drop_down Oxford University Research ArchiveConference object . 2020Data sources: Oxford University Research Archivehttps://doi.org/10.1109/ptc.20...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2019License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ptc.2019.8810558&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert http://arxiv.org/pdf... arrow_drop_down Oxford University Research ArchiveConference object . 2020Data sources: Oxford University Research Archivehttps://doi.org/10.1109/ptc.20...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2019License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ptc.2019.8810558&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Preprint , Other literature type 2019Embargo end date: 01 Jan 2019 United KingdomPublisher:IEEE Funded by:UKRI | Peer-to-Peer Energy Tradi..., UKRI | A Networked Market Platfo...UKRI| Peer-to-Peer Energy Trading and Sharing - 3M (Multi-times, Multi-scales, Multi-qualities) ,UKRI| A Networked Market Platform for Electric Vehicle Smart ChargingAuthors: Han, L; Morstyn, T; Crozier, C; McCulloch, M;Among the various market structures under peer-to-peer energy sharing, one model based on cooperative game theory provides clear incentives for prosumers to collaboratively schedule their energy resources. The computational complexity of this model, however, increases exponentially with the number of participants. To address this issue, this paper proposes the application of K-means clustering to the energy profiles following the grand coalition optimization. The cooperative model is run with the "clustered players" to compute their payoff allocations, which are then further distributed among the prosumers within each cluster. Case studies show that the proposed method can significantly improve the scalability of the cooperative scheme while maintaining a high level of financial incentives for the prosumers. 6 pages, 4 figures, 2 tables. Accepted to the 13th IEEE PES PowerTech Conference, 23-27 June 2019, Milano, Italy
http://arxiv.org/pdf... arrow_drop_down Oxford University Research ArchiveConference object . 2020Data sources: Oxford University Research Archivehttps://doi.org/10.1109/ptc.20...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2019License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ptc.2019.8810558&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert http://arxiv.org/pdf... arrow_drop_down Oxford University Research ArchiveConference object . 2020Data sources: Oxford University Research Archivehttps://doi.org/10.1109/ptc.20...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2019License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ptc.2019.8810558&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Preprint 2018Embargo end date: 01 Jan 2017Publisher:IEEE Authors: Malcolm McCulloch; Constance Crozier; Dimitra Apostolopoulou;Accurately predicting the future power demand of electric vehicles is important for developing policy and industrial strategy. Here we propose a method to create a representative set of electricity demand profiles using survey data from conventional vehicles. This is achieved by developing a model which maps journey and vehicle parameters to an energy consumption, and applying it individually to the entire data set. As a case study the National Travel Survey was used to create a set of profiles representing an entirely electric UK fleet of vehicles. This allowed prediction of the required electricity demand and sizing of the necessary vehicle batteries. Also, by inferring location information from the data, the effectiveness of various charging strategies was assessed. These results will be useful in both National planning, and as the inputs to further research on the impact of electric vehicles.
http://arxiv.org/pdf... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.23919/pscc.2018.8450584&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 8 citations 8 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert http://arxiv.org/pdf... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.23919/pscc.2018.8450584&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Preprint 2018Embargo end date: 01 Jan 2017Publisher:IEEE Authors: Malcolm McCulloch; Constance Crozier; Dimitra Apostolopoulou;Accurately predicting the future power demand of electric vehicles is important for developing policy and industrial strategy. Here we propose a method to create a representative set of electricity demand profiles using survey data from conventional vehicles. This is achieved by developing a model which maps journey and vehicle parameters to an energy consumption, and applying it individually to the entire data set. As a case study the National Travel Survey was used to create a set of profiles representing an entirely electric UK fleet of vehicles. This allowed prediction of the required electricity demand and sizing of the necessary vehicle batteries. Also, by inferring location information from the data, the effectiveness of various charging strategies was assessed. These results will be useful in both National planning, and as the inputs to further research on the impact of electric vehicles.
http://arxiv.org/pdf... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.23919/pscc.2018.8450584&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 8 citations 8 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert http://arxiv.org/pdf... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.23919/pscc.2018.8450584&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu