- home
- Advanced Search
Filters
Clear All- Energy Research
- Restricted
- Open Source
- Embargo
- Swiss National Science Foundation
- Energy Research
- Restricted
- Open Source
- Embargo
- Swiss National Science Foundation
description Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Royal Society of Chemistry (RSC) Funded by:EC | LILO, SNSF | Fundamental Aspects of Ph...EC| LILO ,SNSF| Fundamental Aspects of Photocatalysis and Photoelectrochemistry / Basic Research Instrumentation for Functional CharacterizationArtur Braun; Debajeet K. Bora; Debajeet K. Bora; Debajeet K. Bora; Edwin C. Constable;doi: 10.1039/c2ee23668k
The search for affordable high performance electrode materials in photoelectrochemical hydrogen production by solar water splitting is an ongoing quest. Hematite is a photoanode material with an electronic band gap suitable for efficient absorption of visible light in a photoelectrochemical cell (PEC). Although its poor electronic structure makes hematite a controversial candidate for PEC, it remains promising because it is an earth abundant, chemically stable and low cost material – necessary prerequisites for PEC to become a competitive cost-efficient solar fuel economy. In addition to reviewing some recent PEC research on hematite and its relevant physical and chemical characteristics, we show how hematite obtained by a low cost synthesis can be refined by hydrothermal treatment and further functionalized by coating with phycocyanin, a light harvesting protein known for photosynthesis in blue-green algae.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee23668k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 206 citations 206 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee23668k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014Embargo end date: 01 Jan 2014 SwitzerlandPublisher:Wiley Funded by:SNSF | Effects of climate change...SNSF| Effects of climate change on past, recent, and future biodiversity of alpine/arctic plants: Integrative evidence from phylogenies, population genetics, ecological niche modelling and new insights for conservationTheofania Patsiou; Theofania Patsiou; Elena Conti; Spyros Theodoridis; Niklaus E. Zimmermann; Christophe F. Randin;pmid: 24375923
AbstractOngoing rapid climate change is predicted to cause local extinction of plant species in mountain regions. However, some plant species could have persisted during Quaternary climate oscillations without shifting their range, despite the limited evidence from fossils. Here, we tested two candidate mechanisms of persistence by comparing the macrorefugia and microrefugia (MR) hypotheses. We used the rare and endemic Saxifraga florulenta as a model taxon and combined ensembles of species distribution models (SDMs) with a high‐resolution paleoclimatic and topographic dataset to reconstruct its potential current and past distribution since the last glacial maximum. To test the macrorefugia hypothesis, we verified whether the species could have persisted in or shifted to geographic areas defined by its realized niche. We then identified potential MR based on climatic and topographic properties of the landscape and applied refined scenarios of MR dynamics and functions over time. Last, we quantified the number of known occurrences that could be explained by either the macrorefugia or MR model. A consensus of two or three SDM techniques predicted absence between 14–10, 3–4 and 1 ka bp, which did not support the macrorefugia model. In contrast, we showed that S. florulenta could have contracted into MR during periods of absence predicted by the SDMs and later re‐colonized suitable areas according to the macrorefugia model. Assuming a limited and realistic seed dispersal distance for our species, we explained a large number of the current occurrences (61–96%). Additionally, we showed that MR could have facilitated range expansions or shifts of S. florulenta. Finally, we found that the most recent and the most stable MR were the ones closest to current occurrences. Hence, we propose a novel paradigm to explain plant persistence by highlighting the importance of supporting functions of MR when forecasting the fate of plant species under climate change.
Zurich Open Reposito... arrow_drop_down Zurich Open Repository and ArchiveArticle . 2014 . Peer-reviewedData sources: Zurich Open Repository and ArchiveGlobal Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12515&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 87 citations 87 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Zurich Open Reposito... arrow_drop_down Zurich Open Repository and ArchiveArticle . 2014 . Peer-reviewedData sources: Zurich Open Repository and ArchiveGlobal Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12515&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 France, United StatesPublisher:Wiley Funded by:SNSF | Climate and Environmental...SNSF| Climate and Environmental Physics: Modeling Global Biogeochemical Cycles in the Earth System 2021-2025 (bgcCEP20)Chang, Kuang-Yu; Riley, William J; Collier, Nathan; McNicol, Gavin; Fluet-Chouinard, Etienne; Knox, Sara H; Delwiche, Kyle B; Jackson, Robert B; Poulter, Benjamin; Saunois, Marielle; Chandra, Naveen; Gedney, Nicola; Ishizawa, Misa; Ito, Akihiko; Joos, Fortunat; Kleinen, Thomas; Maggi, Federico; McNorton, Joe; Melton, Joe R; Miller, Paul; Niwa, Yosuke; Pasut, Chiara; Patra, Prabir K; Peng, Changhui; Peng, Sushi; Segers, Arjo; Tian, Hanqin; Tsuruta, Aki; Yao, Yuanzhi; Yin, Yi; Zhang, Wenxin; Zhang, Zhen; Zhu, Qing; Zhu, Qiuan; Zhuang, Qianlai;doi: 10.1111/gcb.16755 , 10.48350/182628
pmid: 37190869
AbstractThe recent rise in atmospheric methane (CH4) concentrations accelerates climate change and offsets mitigation efforts. Although wetlands are the largest natural CH4 source, estimates of global wetland CH4 emissions vary widely among approaches taken by bottom‐up (BU) process‐based biogeochemical models and top‐down (TD) atmospheric inversion methods. Here, we integrate in situ measurements, multi‐model ensembles, and a machine learning upscaling product into the International Land Model Benchmarking system to examine the relationship between wetland CH4 emission estimates and model performance. We find that using better‐performing models identified by observational constraints reduces the spread of wetland CH4 emission estimates by 62% and 39% for BU‐ and TD‐based approaches, respectively. However, global BU and TD CH4 emission estimate discrepancies increased by about 15% (from 31 to 36 TgCH4 year−1) when the top 20% models were used, although we consider this result moderately uncertain given the unevenly distributed global observations. Our analyses demonstrate that model performance ranking is subject to benchmark selection due to large inter‐site variability, highlighting the importance of expanding coverage of benchmark sites to diverse environmental conditions. We encourage future development of wetland CH4 models to move beyond static benchmarking and focus on evaluating site‐specific and ecosystem‐specific variabilities inferred from observations.
https://dx.doi.org/1... arrow_drop_down Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCaltech Authors (California Institute of Technology)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCaltech Authors (California Institute of Technology)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:American Chemical Society (ACS) Funded by:EC | FUBSSY, SNSF | Synthetic Functional Nano...EC| FUBSSY ,SNSF| Synthetic Functional Nanoarchitectures at Interfaces: Ion Channels, Sensors, Photosynthesis and PhotovoltaicsPorus Mariya; Maroni Plinio; Bhosale Rajesh; Sakai Naomi; Matile Stefan; Borkovec Michal;doi: 10.1021/la2007815
pmid: 21526834
Quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) were used to study zipper and layer-by-layer multilayer assemblies of artificial photosystems based on naphthalenediimides (NDIs) attached to an oligophenylethynyl (OPE-NDI) or p-oligophenyl (POP-NDI) backbone in dry and wet state. For the most interesting OPE-NDI zipper, one obtains for the dry film a monolayer thickness of 1.85 nm and a density of 1.58 g/cm(3), while the wet film has a larger monolayer thickness of 3.6 nm with a water content of 36%. The dry thickness of a monolayer in OPE-NDI zippers corresponds to about one-half of the length of the OPE scaffold in agreement with the proposed structure of the zipper. The low water content of the OPE-NDI films confirms their compact structure. The dry monolayer thickness of the POP-NDI films of 1.45 nm is smaller than that for the OPE-NDI films, which is probably related to a tilt of the POP scaffolds within the adsorbed layer. The POP-NDI films swell in water much more substantially, suggesting a much more open structure. These features are in excellent agreement with the better photophysical performance of the OPE-NDI assemblies when compared to the POP-NDI films.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/la2007815&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 8 citations 8 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/la2007815&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:American Chemical Society (ACS) Funded by:EC | FUBSSY, SNSF | Synthetic Functional Nano..., SNSF | Applications de la spectr...EC| FUBSSY ,SNSF| Synthetic Functional Nanoarchitectures at Interfaces: Ion Channels, Sensors, Photosynthesis and Photovoltaics ,SNSF| Applications de la spectroscopie optique non-linéaire à l'étude de processus photoinduits ultrarapidesSakai Naomi; Lista Marco; Kel Oksana; Sakurai Shin-ichiro; Emery Daniel; Mareda Jiri; Vauthey Eric; Matile Stefan;doi: 10.1021/ja203792n
pmid: 21678985
Facile access to complex systems is crucial to generate the functional materials of the future. Herein, we report self-organizing surface-initiated polymerization (SOSIP) as a user-friendly method to create ordered as well as oriented functional systems on transparent oxide surfaces. In SOSIP, self-organization of monomers and ring-opening disulfide exchange polymerization are combined to ensure the controlled growth of the polymer from the surface. This approach provides rapid access to thick films with smooth, reactivatable surfaces and long-range order with few defects and high precision, including panchromatic photosystems with oriented four-component redox gradients. The activity of SOSIP architectures is clearly better than that of disordered controls.
Journal of the Ameri... arrow_drop_down Journal of the American Chemical SocietyArticle . 2011Data sources: European Research Council (ERC)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ja203792n&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 121 citations 121 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of the Ameri... arrow_drop_down Journal of the American Chemical SocietyArticle . 2011Data sources: European Research Council (ERC)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ja203792n&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Switzerland, Czech RepublicPublisher:Wiley Funded by:SNSF | Fundamental studies of me...SNSF| Fundamental studies of mesoscopic devices for solar energy conversionWeiwei Zhang; Shaik M. Zakeeruddin; Parnian Ferdowsi; Parnian Ferdowsi; Tomas Edvinson; Ladislav Kavan; Anders Hagfeldt; Yasemin Saygili; Javad Mokhtari; Michael Grätzel;pmid: 29227038
AbstractA metal‐free organic sensitizer, suitable for the application in dye‐sensitized solar cells (DSSCs), has been designed, synthesized and characterized both experimentally and theoretically. The structure of the novel donor–acceptor–π‐bridge–acceptor (D–A–π–A) dye incorporates a triphenylamine (TPA) segment and 4‐(benzo[c][1,2,5]thiadiazol‐4‐ylethynyl)benzoic acid (BTEBA). The triphenylamine unit is widely used as an electron donor for photosensitizers, owing to its nonplanar molecular configuration and excellent electron‐donating capability, whereas 4‐(benzo[c][1,2,5]thiadiazol‐4‐ylethynyl)benzoic acid is used as an electron acceptor unit. The influences of I3−/I−, [Co(bpy)3]3+/2+ and [Cu(tmby)2]2+/+ (tmby=4,4′,6,6′‐tetramethyl‐2,2′‐bipyridine) as redox electrolytes on the DSSC device performance were also investigated. The maximal monochromatic incident photon‐to‐current conversion efficiency (IPCE) reached 81 % and the solar light to electrical energy conversion efficiency of devices with [Cu(tmby)2]2+/+ reached 7.15 %. The devices with [Co(bpy)3]3+/2+ and I3−/I− electrolytes gave efficiencies of 5.22 % and 6.14 %, respectively. The lowest device performance with a [Co(bpy)3]3+/2+‐based electrolyte is attributed to increased charge recombination.
Repository of the Cz... arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2018Data sources: Repository of the Czech Academy of SciencesChemSusChemArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201701949&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Repository of the Cz... arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2018Data sources: Repository of the Czech Academy of SciencesChemSusChemArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201701949&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SwitzerlandPublisher:Elsevier BV Funded by:SNSF | Hydrologic Controls on Ec..., EC | RINECSNSF| Hydrologic Controls on Ecological Processes: River Networks as Ecological Corridors for species and populations. Continuation ,EC| RINECM. Jason Todd; Rachata Muneepeerakul; Megan Konar; Ignacio Rodriguez-Iturbe; Andrea Rinaldo; Andrea Rinaldo;A synthesis is presented highlighting the importance of hydrologic variables and dynamics to biodiversity patterns. The focus of this paper is the key hydrologic controls crucial towards quantifying the impacts of climate changes on the distribution of species. Specifically, we highlight the hydrologic controls operating on the carrying capacity, niche formation, and dispersal dynamics. This synthesis will facilitate avenues of future research and is connected to issues of major practical importance, such as the integration of the structure of river networks into conservation strategies and the evaluations of the impacts of climate change on biodiversity.
Advances in Water Re... arrow_drop_down Advances in Water ResourcesArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.advwatres.2012.02.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 55 citations 55 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert Advances in Water Re... arrow_drop_down Advances in Water ResourcesArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.advwatres.2012.02.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 ItalyPublisher:Royal Society of Chemistry (RSC) Funded by:SNSF | Unconventional Approaches...SNSF| Unconventional Approaches to the Activation of Dihydrogen (FOR 1175) (D-A-CH/LAE)Bevilacqua M.; Bianchini C.; Marchionni A.; Filippi J.; Lavacchi A.; Miller H.; Oberhauser W.; Vizza F.; Granozzi G.; Artiglia L.; Annen S. P.; Krumeich F.; Gruetzmacher H.;doi: 10.1039/c2ee22055e
The electrooxidation of ethanol to acetate is achieved with Rh(I) diolefin amine complexes of the general formula [Rh(Y)(trop2NH)(L)] (L = PPh3, P(4-n-BuPh)3; Y = triflate, acetate; Bu = butyl) in direct alcohol fuel cells that have the peculiarity of containing a molecular anode electrocatalyst and, hence, are denoted as OrganoMetallic Fuel Cells (OMFCs). Changing the carbon black support from Vulcan XC-72 (Cv) to Ketjenblack EC 600JD (Ck) and/or the axial phosphane to produce non crystalline complexes has been found to remarkably change the electrochemical properties of the organorhodium catalysts, especially in terms of specific activity and durability. An in-depth study has shown that either Ck or P(4-n-butylPh)3 favour the formation of an amorphous Rh-acetato phase on the electrode, leading to a much more efficient and recyclable catalyst as compared to a crystalline Rh-acetate complex which is formed on Cv with PPh3 as the ligand. The ameliorating effect of the amorphous phase has been ascribed to its higher number of surface complex molecules as compared to the crystalline phase. A specific activity as high as 10 000 A gRh-1 has been found in a half cell, which is the highest value ever reported for ethanol electrooxidation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee22055e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee22055e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Switzerland, Czech RepublicPublisher:Elsevier BV Funded by:SNSF | Fundamental studies of me...SNSF| Fundamental studies of mesoscopic devices for solar energy conversionParnian Ferdowsi; Parnian Ferdowsi; Javad Mokhtari; Anders Hagfeldt; Shaik M. Zakeeruddin; Michael Grätzel; Yasemin Saygili; Ladislav Kavan;Abstract Novel facile synthetic protocol is developed to prepare electrochemically and optically clean Cu(tmby)2TFSI and Cu(tmby)2TFSI2 in a mixture (tmby = 4,4,6,6-tetramethyl-2,2-bipyridine; TFSI = trifluoromethylsufonylimide). This pure Cu(II/I) redox mediator exhibits improved charge-transfer rate at the counterelectrode (PEDOT) and faster diffusion transport in the solution. Four pyridine derivatives: 4-tert-butylpyridine, 2,6-bis-tert-butylpyridine, 4-methoxypyridine and 4-(5-nonyl)pyridine are evaluated as electrolyte additives. Base-specific electrochemical properties of the redox mediator are found for Cu(tmby)22+/+, but not for Co(bpy)33+/2+ which is used as control system. Due to steric hindrance, 2,6-bis-tert-butylpyridine has the smallest influence on the mediator's electrochemistry, but is also ineffective for the VOC enhancement through TiO2 conduction band upshift. Charge-transfer rates at PEDOT surface and diffusion resistances correlate with the basicity (pKa) of the used pyridine derivatives. The dye (Y123)-sensitized solar cells are evaluated by solar conversion performance in addition to electron lifetime, charge extraction and long-term stability tests. The optimization of pyridine bases for the Cu-mediated solar cells represents interplay of basicity and coordination ability. In turn, this allows for tuning of the charge transfer rate at counterelectrode and the mass transport in the electrolyte solution. The 4-(5-nonyl)pyridine is outperforming all the remaining bases in performance metrics of the corresponding solar cells.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2018.01.142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2018.01.142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 SwitzerlandPublisher:AIP Publishing Funded by:SNSF | Surfactants @ interfaces ..., EC | MINESNSF| Surfactants @ interfaces of nanoscopic oil droplets in water: A Soap Opera? ,EC| MINESmolentsev Nikolay; Chen Yixing; Jena Kailash C; Brown Matthew A; Roke Sylvie;doi: 10.1063/1.4896996
pmid: 25399189
The use of a liquid microjet as a possible source of interest for Second Harmonic Generation (SHG) and Sum Frequency Generation (SFG) spectroscopy is examined. We measured non-resonant SHG scattering patterns from the air/water interface of a microjet of pure water and observe a strong enhancement of the SHG signal for certain scattering angles. These enhancements can be explained by the optical properties and the shape of the liquid microjet. SFG experiments at the surface of a liquid microjet of ethanol in air show that it is also possible to measure the coherent vibrational SFG spectrum of the ethanol/air interface in this way. Our findings are useful for future far-UV or X-ray based nonlinear optical surface experiments on liquid jets. In addition, combined X-ray photoelectron spectroscopy and SHG/SFG measurements are feasible, which will be very useful in improving our understanding of the molecular foundations of electrostatic and chemical surface properties and phenomena.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4896996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4896996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Royal Society of Chemistry (RSC) Funded by:EC | LILO, SNSF | Fundamental Aspects of Ph...EC| LILO ,SNSF| Fundamental Aspects of Photocatalysis and Photoelectrochemistry / Basic Research Instrumentation for Functional CharacterizationArtur Braun; Debajeet K. Bora; Debajeet K. Bora; Debajeet K. Bora; Edwin C. Constable;doi: 10.1039/c2ee23668k
The search for affordable high performance electrode materials in photoelectrochemical hydrogen production by solar water splitting is an ongoing quest. Hematite is a photoanode material with an electronic band gap suitable for efficient absorption of visible light in a photoelectrochemical cell (PEC). Although its poor electronic structure makes hematite a controversial candidate for PEC, it remains promising because it is an earth abundant, chemically stable and low cost material – necessary prerequisites for PEC to become a competitive cost-efficient solar fuel economy. In addition to reviewing some recent PEC research on hematite and its relevant physical and chemical characteristics, we show how hematite obtained by a low cost synthesis can be refined by hydrothermal treatment and further functionalized by coating with phycocyanin, a light harvesting protein known for photosynthesis in blue-green algae.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee23668k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 206 citations 206 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee23668k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014Embargo end date: 01 Jan 2014 SwitzerlandPublisher:Wiley Funded by:SNSF | Effects of climate change...SNSF| Effects of climate change on past, recent, and future biodiversity of alpine/arctic plants: Integrative evidence from phylogenies, population genetics, ecological niche modelling and new insights for conservationTheofania Patsiou; Theofania Patsiou; Elena Conti; Spyros Theodoridis; Niklaus E. Zimmermann; Christophe F. Randin;pmid: 24375923
AbstractOngoing rapid climate change is predicted to cause local extinction of plant species in mountain regions. However, some plant species could have persisted during Quaternary climate oscillations without shifting their range, despite the limited evidence from fossils. Here, we tested two candidate mechanisms of persistence by comparing the macrorefugia and microrefugia (MR) hypotheses. We used the rare and endemic Saxifraga florulenta as a model taxon and combined ensembles of species distribution models (SDMs) with a high‐resolution paleoclimatic and topographic dataset to reconstruct its potential current and past distribution since the last glacial maximum. To test the macrorefugia hypothesis, we verified whether the species could have persisted in or shifted to geographic areas defined by its realized niche. We then identified potential MR based on climatic and topographic properties of the landscape and applied refined scenarios of MR dynamics and functions over time. Last, we quantified the number of known occurrences that could be explained by either the macrorefugia or MR model. A consensus of two or three SDM techniques predicted absence between 14–10, 3–4 and 1 ka bp, which did not support the macrorefugia model. In contrast, we showed that S. florulenta could have contracted into MR during periods of absence predicted by the SDMs and later re‐colonized suitable areas according to the macrorefugia model. Assuming a limited and realistic seed dispersal distance for our species, we explained a large number of the current occurrences (61–96%). Additionally, we showed that MR could have facilitated range expansions or shifts of S. florulenta. Finally, we found that the most recent and the most stable MR were the ones closest to current occurrences. Hence, we propose a novel paradigm to explain plant persistence by highlighting the importance of supporting functions of MR when forecasting the fate of plant species under climate change.
Zurich Open Reposito... arrow_drop_down Zurich Open Repository and ArchiveArticle . 2014 . Peer-reviewedData sources: Zurich Open Repository and ArchiveGlobal Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12515&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 87 citations 87 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Zurich Open Reposito... arrow_drop_down Zurich Open Repository and ArchiveArticle . 2014 . Peer-reviewedData sources: Zurich Open Repository and ArchiveGlobal Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12515&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 France, United StatesPublisher:Wiley Funded by:SNSF | Climate and Environmental...SNSF| Climate and Environmental Physics: Modeling Global Biogeochemical Cycles in the Earth System 2021-2025 (bgcCEP20)Chang, Kuang-Yu; Riley, William J; Collier, Nathan; McNicol, Gavin; Fluet-Chouinard, Etienne; Knox, Sara H; Delwiche, Kyle B; Jackson, Robert B; Poulter, Benjamin; Saunois, Marielle; Chandra, Naveen; Gedney, Nicola; Ishizawa, Misa; Ito, Akihiko; Joos, Fortunat; Kleinen, Thomas; Maggi, Federico; McNorton, Joe; Melton, Joe R; Miller, Paul; Niwa, Yosuke; Pasut, Chiara; Patra, Prabir K; Peng, Changhui; Peng, Sushi; Segers, Arjo; Tian, Hanqin; Tsuruta, Aki; Yao, Yuanzhi; Yin, Yi; Zhang, Wenxin; Zhang, Zhen; Zhu, Qing; Zhu, Qiuan; Zhuang, Qianlai;doi: 10.1111/gcb.16755 , 10.48350/182628
pmid: 37190869
AbstractThe recent rise in atmospheric methane (CH4) concentrations accelerates climate change and offsets mitigation efforts. Although wetlands are the largest natural CH4 source, estimates of global wetland CH4 emissions vary widely among approaches taken by bottom‐up (BU) process‐based biogeochemical models and top‐down (TD) atmospheric inversion methods. Here, we integrate in situ measurements, multi‐model ensembles, and a machine learning upscaling product into the International Land Model Benchmarking system to examine the relationship between wetland CH4 emission estimates and model performance. We find that using better‐performing models identified by observational constraints reduces the spread of wetland CH4 emission estimates by 62% and 39% for BU‐ and TD‐based approaches, respectively. However, global BU and TD CH4 emission estimate discrepancies increased by about 15% (from 31 to 36 TgCH4 year−1) when the top 20% models were used, although we consider this result moderately uncertain given the unevenly distributed global observations. Our analyses demonstrate that model performance ranking is subject to benchmark selection due to large inter‐site variability, highlighting the importance of expanding coverage of benchmark sites to diverse environmental conditions. We encourage future development of wetland CH4 models to move beyond static benchmarking and focus on evaluating site‐specific and ecosystem‐specific variabilities inferred from observations.
https://dx.doi.org/1... arrow_drop_down Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCaltech Authors (California Institute of Technology)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCaltech Authors (California Institute of Technology)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:American Chemical Society (ACS) Funded by:EC | FUBSSY, SNSF | Synthetic Functional Nano...EC| FUBSSY ,SNSF| Synthetic Functional Nanoarchitectures at Interfaces: Ion Channels, Sensors, Photosynthesis and PhotovoltaicsPorus Mariya; Maroni Plinio; Bhosale Rajesh; Sakai Naomi; Matile Stefan; Borkovec Michal;doi: 10.1021/la2007815
pmid: 21526834
Quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) were used to study zipper and layer-by-layer multilayer assemblies of artificial photosystems based on naphthalenediimides (NDIs) attached to an oligophenylethynyl (OPE-NDI) or p-oligophenyl (POP-NDI) backbone in dry and wet state. For the most interesting OPE-NDI zipper, one obtains for the dry film a monolayer thickness of 1.85 nm and a density of 1.58 g/cm(3), while the wet film has a larger monolayer thickness of 3.6 nm with a water content of 36%. The dry thickness of a monolayer in OPE-NDI zippers corresponds to about one-half of the length of the OPE scaffold in agreement with the proposed structure of the zipper. The low water content of the OPE-NDI films confirms their compact structure. The dry monolayer thickness of the POP-NDI films of 1.45 nm is smaller than that for the OPE-NDI films, which is probably related to a tilt of the POP scaffolds within the adsorbed layer. The POP-NDI films swell in water much more substantially, suggesting a much more open structure. These features are in excellent agreement with the better photophysical performance of the OPE-NDI assemblies when compared to the POP-NDI films.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/la2007815&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 8 citations 8 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/la2007815&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:American Chemical Society (ACS) Funded by:EC | FUBSSY, SNSF | Synthetic Functional Nano..., SNSF | Applications de la spectr...EC| FUBSSY ,SNSF| Synthetic Functional Nanoarchitectures at Interfaces: Ion Channels, Sensors, Photosynthesis and Photovoltaics ,SNSF| Applications de la spectroscopie optique non-linéaire à l'étude de processus photoinduits ultrarapidesSakai Naomi; Lista Marco; Kel Oksana; Sakurai Shin-ichiro; Emery Daniel; Mareda Jiri; Vauthey Eric; Matile Stefan;doi: 10.1021/ja203792n
pmid: 21678985
Facile access to complex systems is crucial to generate the functional materials of the future. Herein, we report self-organizing surface-initiated polymerization (SOSIP) as a user-friendly method to create ordered as well as oriented functional systems on transparent oxide surfaces. In SOSIP, self-organization of monomers and ring-opening disulfide exchange polymerization are combined to ensure the controlled growth of the polymer from the surface. This approach provides rapid access to thick films with smooth, reactivatable surfaces and long-range order with few defects and high precision, including panchromatic photosystems with oriented four-component redox gradients. The activity of SOSIP architectures is clearly better than that of disordered controls.
Journal of the Ameri... arrow_drop_down Journal of the American Chemical SocietyArticle . 2011Data sources: European Research Council (ERC)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ja203792n&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 121 citations 121 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of the Ameri... arrow_drop_down Journal of the American Chemical SocietyArticle . 2011Data sources: European Research Council (ERC)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ja203792n&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Switzerland, Czech RepublicPublisher:Wiley Funded by:SNSF | Fundamental studies of me...SNSF| Fundamental studies of mesoscopic devices for solar energy conversionWeiwei Zhang; Shaik M. Zakeeruddin; Parnian Ferdowsi; Parnian Ferdowsi; Tomas Edvinson; Ladislav Kavan; Anders Hagfeldt; Yasemin Saygili; Javad Mokhtari; Michael Grätzel;pmid: 29227038
AbstractA metal‐free organic sensitizer, suitable for the application in dye‐sensitized solar cells (DSSCs), has been designed, synthesized and characterized both experimentally and theoretically. The structure of the novel donor–acceptor–π‐bridge–acceptor (D–A–π–A) dye incorporates a triphenylamine (TPA) segment and 4‐(benzo[c][1,2,5]thiadiazol‐4‐ylethynyl)benzoic acid (BTEBA). The triphenylamine unit is widely used as an electron donor for photosensitizers, owing to its nonplanar molecular configuration and excellent electron‐donating capability, whereas 4‐(benzo[c][1,2,5]thiadiazol‐4‐ylethynyl)benzoic acid is used as an electron acceptor unit. The influences of I3−/I−, [Co(bpy)3]3+/2+ and [Cu(tmby)2]2+/+ (tmby=4,4′,6,6′‐tetramethyl‐2,2′‐bipyridine) as redox electrolytes on the DSSC device performance were also investigated. The maximal monochromatic incident photon‐to‐current conversion efficiency (IPCE) reached 81 % and the solar light to electrical energy conversion efficiency of devices with [Cu(tmby)2]2+/+ reached 7.15 %. The devices with [Co(bpy)3]3+/2+ and I3−/I− electrolytes gave efficiencies of 5.22 % and 6.14 %, respectively. The lowest device performance with a [Co(bpy)3]3+/2+‐based electrolyte is attributed to increased charge recombination.
Repository of the Cz... arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2018Data sources: Repository of the Czech Academy of SciencesChemSusChemArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201701949&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Repository of the Cz... arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2018Data sources: Repository of the Czech Academy of SciencesChemSusChemArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201701949&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SwitzerlandPublisher:Elsevier BV Funded by:SNSF | Hydrologic Controls on Ec..., EC | RINECSNSF| Hydrologic Controls on Ecological Processes: River Networks as Ecological Corridors for species and populations. Continuation ,EC| RINECM. Jason Todd; Rachata Muneepeerakul; Megan Konar; Ignacio Rodriguez-Iturbe; Andrea Rinaldo; Andrea Rinaldo;A synthesis is presented highlighting the importance of hydrologic variables and dynamics to biodiversity patterns. The focus of this paper is the key hydrologic controls crucial towards quantifying the impacts of climate changes on the distribution of species. Specifically, we highlight the hydrologic controls operating on the carrying capacity, niche formation, and dispersal dynamics. This synthesis will facilitate avenues of future research and is connected to issues of major practical importance, such as the integration of the structure of river networks into conservation strategies and the evaluations of the impacts of climate change on biodiversity.
Advances in Water Re... arrow_drop_down Advances in Water ResourcesArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.advwatres.2012.02.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 55 citations 55 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert Advances in Water Re... arrow_drop_down Advances in Water ResourcesArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.advwatres.2012.02.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 ItalyPublisher:Royal Society of Chemistry (RSC) Funded by:SNSF | Unconventional Approaches...SNSF| Unconventional Approaches to the Activation of Dihydrogen (FOR 1175) (D-A-CH/LAE)Bevilacqua M.; Bianchini C.; Marchionni A.; Filippi J.; Lavacchi A.; Miller H.; Oberhauser W.; Vizza F.; Granozzi G.; Artiglia L.; Annen S. P.; Krumeich F.; Gruetzmacher H.;doi: 10.1039/c2ee22055e
The electrooxidation of ethanol to acetate is achieved with Rh(I) diolefin amine complexes of the general formula [Rh(Y)(trop2NH)(L)] (L = PPh3, P(4-n-BuPh)3; Y = triflate, acetate; Bu = butyl) in direct alcohol fuel cells that have the peculiarity of containing a molecular anode electrocatalyst and, hence, are denoted as OrganoMetallic Fuel Cells (OMFCs). Changing the carbon black support from Vulcan XC-72 (Cv) to Ketjenblack EC 600JD (Ck) and/or the axial phosphane to produce non crystalline complexes has been found to remarkably change the electrochemical properties of the organorhodium catalysts, especially in terms of specific activity and durability. An in-depth study has shown that either Ck or P(4-n-butylPh)3 favour the formation of an amorphous Rh-acetato phase on the electrode, leading to a much more efficient and recyclable catalyst as compared to a crystalline Rh-acetate complex which is formed on Cv with PPh3 as the ligand. The ameliorating effect of the amorphous phase has been ascribed to its higher number of surface complex molecules as compared to the crystalline phase. A specific activity as high as 10 000 A gRh-1 has been found in a half cell, which is the highest value ever reported for ethanol electrooxidation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee22055e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee22055e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Switzerland, Czech RepublicPublisher:Elsevier BV Funded by:SNSF | Fundamental studies of me...SNSF| Fundamental studies of mesoscopic devices for solar energy conversionParnian Ferdowsi; Parnian Ferdowsi; Javad Mokhtari; Anders Hagfeldt; Shaik M. Zakeeruddin; Michael Grätzel; Yasemin Saygili; Ladislav Kavan;Abstract Novel facile synthetic protocol is developed to prepare electrochemically and optically clean Cu(tmby)2TFSI and Cu(tmby)2TFSI2 in a mixture (tmby = 4,4,6,6-tetramethyl-2,2-bipyridine; TFSI = trifluoromethylsufonylimide). This pure Cu(II/I) redox mediator exhibits improved charge-transfer rate at the counterelectrode (PEDOT) and faster diffusion transport in the solution. Four pyridine derivatives: 4-tert-butylpyridine, 2,6-bis-tert-butylpyridine, 4-methoxypyridine and 4-(5-nonyl)pyridine are evaluated as electrolyte additives. Base-specific electrochemical properties of the redox mediator are found for Cu(tmby)22+/+, but not for Co(bpy)33+/2+ which is used as control system. Due to steric hindrance, 2,6-bis-tert-butylpyridine has the smallest influence on the mediator's electrochemistry, but is also ineffective for the VOC enhancement through TiO2 conduction band upshift. Charge-transfer rates at PEDOT surface and diffusion resistances correlate with the basicity (pKa) of the used pyridine derivatives. The dye (Y123)-sensitized solar cells are evaluated by solar conversion performance in addition to electron lifetime, charge extraction and long-term stability tests. The optimization of pyridine bases for the Cu-mediated solar cells represents interplay of basicity and coordination ability. In turn, this allows for tuning of the charge transfer rate at counterelectrode and the mass transport in the electrolyte solution. The 4-(5-nonyl)pyridine is outperforming all the remaining bases in performance metrics of the corresponding solar cells.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2018.01.142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2018.01.142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 SwitzerlandPublisher:AIP Publishing Funded by:SNSF | Surfactants @ interfaces ..., EC | MINESNSF| Surfactants @ interfaces of nanoscopic oil droplets in water: A Soap Opera? ,EC| MINESmolentsev Nikolay; Chen Yixing; Jena Kailash C; Brown Matthew A; Roke Sylvie;doi: 10.1063/1.4896996
pmid: 25399189
The use of a liquid microjet as a possible source of interest for Second Harmonic Generation (SHG) and Sum Frequency Generation (SFG) spectroscopy is examined. We measured non-resonant SHG scattering patterns from the air/water interface of a microjet of pure water and observe a strong enhancement of the SHG signal for certain scattering angles. These enhancements can be explained by the optical properties and the shape of the liquid microjet. SFG experiments at the surface of a liquid microjet of ethanol in air show that it is also possible to measure the coherent vibrational SFG spectrum of the ethanol/air interface in this way. Our findings are useful for future far-UV or X-ray based nonlinear optical surface experiments on liquid jets. In addition, combined X-ray photoelectron spectroscopy and SHG/SFG measurements are feasible, which will be very useful in improving our understanding of the molecular foundations of electrostatic and chemical surface properties and phenomena.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4896996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4896996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu