- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 Australia, Australia, Spain, France, Spain, United KingdomPublisher:Wiley Funded by:NSERC, EC | BIGSEANSERC ,EC| BIGSEAWilliam W. L. Cheung; Marta Coll; Derek P. Tittensor; Derek P. Tittensor; Eric D. Galbraith; Eric D. Galbraith; Olivier Maury; Olivier Maury; Andrea Bryndum-Buchholz; Simon Jennings; Simon Jennings; Heike K. Lotze; Julia L. Blanchard;AbstractClimate change effects on marine ecosystems include impacts on primary production, ocean temperature, species distributions, and abundance at local to global scales. These changes will significantly alter marine ecosystem structure and function with associated socio‐economic impacts on ecosystem services, marine fisheries, and fishery‐dependent societies. Yet how these changes may play out among ocean basins over the 21st century remains unclear, with most projections coming from single ecosystem models that do not adequately capture the range of model uncertainty. We address this by using six marine ecosystem models within the Fisheries and Marine Ecosystem Model Intercomparison Project (Fish‐MIP) to analyze responses of marine animal biomass in all major ocean basins to contrasting climate change scenarios. Under a high emissions scenario (RCP8.5), total marine animal biomass declined by an ensemble mean of 15%–30% (±12%–17%) in the North and South Atlantic and Pacific, and the Indian Ocean by 2100, whereas polar ocean basins experienced a 20%–80% (±35%–200%) increase. Uncertainty and model disagreement were greatest in the Arctic and smallest in the South Pacific Ocean. Projected changes were reduced under a low (RCP2.6) emissions scenario. Under RCP2.6 and RCP8.5, biomass projections were highly correlated with changes in net primary production and negatively correlated with projected sea surface temperature increases across all ocean basins except the polar oceans. Ecosystem structure was projected to shift as animal biomass concentrated in different size‐classes across ocean basins and emissions scenarios. We highlight that climate change mitigation measures could moderate the impacts on marine animal biomass by reducing biomass declines in the Pacific, Atlantic, and Indian Ocean basins. The range of individual model projections emphasizes the importance of using an ensemble approach in assessing uncertainty of future change.
Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019Data sources: Diposit Digital de Documents de la UABArchiMer - Institutional Archive of IfremerOther literature type . 2019Data sources: ArchiMer - Institutional Archive of IfremerGlobal Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14512&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 161 citations 161 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 58visibility views 58 download downloads 352 Powered bymore_vert Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019Data sources: Diposit Digital de Documents de la UABArchiMer - Institutional Archive of IfremerOther literature type . 2019Data sources: ArchiMer - Institutional Archive of IfremerGlobal Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14512&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Australia, Australia, Spain, France, Spain, United States, Germany, France, France, France, France, France, Australia, Australia, France, France, Spain, Australia, SpainPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:EC | TRIATLAS, NSERC, ANR | SOMBEE +7 projectsEC| TRIATLAS ,NSERC ,ANR| SOMBEE ,UKRI| GCRF One Ocean Hub ,ARC| Discovery Projects - Grant ID: DP150102656 ,EC| MISSION ATLANTIC ,ARC| Discovery Projects - Grant ID: DP190102293 ,ARC| Discovery Projects - Grant ID: DP170104240 ,ANR| CIGOEF ,EC| FutureMARESHubert Du Pontavice; Jeroen Steenbeek; Cheryl S. Harrison; Cheryl S. Harrison; William W. L. Cheung; Nicolas Barrier; Camilla Novaglio; Jasmin G. John; Colleen M. Petrik; Villy Christensen; Derek P. Tittensor; Derek P. Tittensor; Gregory L. Britten; Charles A. Stock; Jose A. Fernandes-Salvador; Andrea Bryndum-Buchholz; Heike K. Lotze; Elizabeth A. Fulton; Elizabeth A. Fulton; Laurent Bopp; Matthias Büchner; Didier Gascuel; Jérôme Guiet; Ryan F. Heneghan; Yunne-Jai Shin; Jason D. Everett; Jason D. Everett; Jason D. Everett; Daniele Bianchi; Tyler D. Eddy; Jason S. Link; Kelly Ortega-Cisneros; Jonathan Rault; John P. Dunne; Olivier Maury; Marta Coll; Eric D. Galbraith; Anthony J. Richardson; Anthony J. Richardson; Julia L. Blanchard; Juliano Palacios-Abrantes; Juliano Palacios-Abrantes; Lynne J. Shannon;AbstractProjections of climate change impacts on marine ecosystems have revealed long-term declines in global marine animal biomass and unevenly distributed impacts on fisheries. Here we apply an enhanced suite of global marine ecosystem models from the Fisheries and Marine Ecosystem Model Intercomparison Project (Fish-MIP), forced by new-generation Earth system model outputs from Phase 6 of the Coupled Model Intercomparison Project (CMIP6), to provide insights into how projected climate change will affect future ocean ecosystems. Compared with the previous generation CMIP5-forced Fish-MIP ensemble, the new ensemble ecosystem simulations show a greater decline in mean global ocean animal biomass under both strong-mitigation and high-emissions scenarios due to elevated warming, despite greater uncertainty in net primary production in the high-emissions scenario. Regional shifts in the direction of biomass changes highlight the continued and urgent need to reduce uncertainty in the projected responses of marine ecosystems to climate change to help support adaptation planning.
Nature Climate Chang... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/0xg0m4hxData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10072/429472Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03475045Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03475045Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2021License: CC BYData sources: Diposit Digital de Documents de la UABHAL-Ecole des Ponts ParisTechArticle . 2021License: CC BYData sources: HAL-Ecole des Ponts ParisTecheScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01173-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 141 citations 141 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 54visibility views 54 download downloads 159 Powered bymore_vert Nature Climate Chang... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/0xg0m4hxData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10072/429472Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03475045Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03475045Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2021License: CC BYData sources: Diposit Digital de Documents de la UABHAL-Ecole des Ponts ParisTechArticle . 2021License: CC BYData sources: HAL-Ecole des Ponts ParisTecheScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01173-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 AustraliaPublisher:American Geophysical Union (AGU) Publicly fundedAuthors: Julia G. Mason; Andrea Bryndum‐Buchholz; Juliano Palacios‐Abrantes; Renuka Badhe; +8 AuthorsJulia G. Mason; Andrea Bryndum‐Buchholz; Juliano Palacios‐Abrantes; Renuka Badhe; Isabella Morgante; Daniele Bianchi; Julia L. Blanchard; Jason D. Everett; Cheryl S. Harrison; Ryan F. Heneghan; Camilla Novaglio; Colleen M. Petrik;AbstractEmerging fishing activity due to melting ice and poleward species distribution shifts in the rapidly‐warming Arctic Ocean challenges transboundary management and requires proactive governance. A 2021 moratorium on commercial fishing in the Arctic high seas provides a 16‐year runway for improved scientific understanding. Given substantial knowledge gaps, characterizing areas of highest uncertainty is a key first step. Marine ecosystem model ensembles that project future fish distributions could inform management of future Arctic fisheries, but Arctic‐specific variation has not yet been examined for global ensembles. We use the Fisheries and Marine Ecosystem Intercomparison Project ensemble driven by two Earth System Models (ESMs) under two Shared Socioeconomic Pathways (SSP1‐2.6 and SSP5‐8.5) to illustrate the current state of and uncertainty among biomass projections for the Arctic Ocean over the duration of the moratorium. The models generally project biomass increases in more northern Arctic ecosystems and decreases in southern ecosystems, but wide intra‐model variation exceeds projection means in most cases. The two ESMs show opposite trends for the main environmental drivers. Therefore, these projections are currently insufficient to inform policy actions. Investment in sustained monitoring and improving modeling capacity, especially for sea ice dynamics, is urgently needed. Concurrently, it will be necessary to develop frameworks for making precautionary decisions under continued uncertainty. We conclude that researchers should be transparent about uncertainty, presenting these model projections not as a source of scientific “answers,” but as bounding for plausible, policy‐relevant questions to assess trade‐offs and mitigate risks.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2024License: CC BY NC NDFull-Text: https://hdl.handle.net/10072/432738Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023ef004393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2024License: CC BY NC NDFull-Text: https://hdl.handle.net/10072/432738Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023ef004393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 Australia, Australia, Spain, FrancePublisher:Canadian Science Publishing Funded by:NSERC, EC | BIGSEANSERC ,EC| BIGSEAChristensen; Derek P. Tittensor; Olivier Maury; Olivier Maury; Andrea Bryndum-Buchholz; F Prentice; Julia L. Blanchard; Heike K. Lotze; Eric D. Galbraith; Eric D. Galbraith; Wwl Cheung;Under climate change, species composition and abundances in high-latitude waters are expected to substantially reconfigure with consequences for trophic relationships and ecosystem services. Outcomes are challenging to project at national scales, despite their importance for management decisions. Using an ensemble of six global marine ecosystem models we analyzed marine ecosystem responses to climate change from 1971 to 2099 in Canada’s Exclusive Economic Zone (EEZ) under four standardized emissions scenarios. By 2099, under business-as-usual emissions (RCP8.5) projected marine animal biomass declined by an average of −7.7% (±29.5%) within the Canadian EEZ, dominated by declines in the Pacific (−24% ± 24.5%) and Atlantic (−25.5% ± 9.5%) areas; these were partially compensated by increases in the Canadian Arctic (+26.2% ± 38.4%). Lower emissions scenarios projected successively smaller biomass changes, highlighting the benefits of stronger mitigation targets. Individual model projections were most consistent in the Atlantic and Pacific, but highly variable in the Arctic due to model uncertainties in polar regions. Different trajectories of future marine biomass changes will require regional-specific responses in conservation and management strategies, such as adaptive planning of marine protected areas and species-specific management plans, to enhance resilience and rebuilding of Canada’s marine ecosystems and commercial fish stocks.
FACETS arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020License: CC BYData sources: Diposit Digital de Documents de la UABArchiMer - Institutional Archive of IfremerOther literature type . 2020Data sources: ArchiMer - Institutional Archive of IfremerUniversity of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1139/facets-2019-0035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert FACETS arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020License: CC BYData sources: Diposit Digital de Documents de la UABArchiMer - Institutional Archive of IfremerOther literature type . 2020Data sources: ArchiMer - Institutional Archive of IfremerUniversity of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1139/facets-2019-0035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 Spain, France, United Kingdom, France, Australia, France, Germany, France, France, Australia, United States, Spain, FrancePublisher:Proceedings of the National Academy of Sciences Funded by:EC | BIGSEA, EC | CERES, NSERC +1 projectsEC| BIGSEA ,EC| CERES ,NSERC ,EC| MERCESDavid A. Carozza; Steve Mackinson; Jeroen Steenbeek; Villy Christensen; Philippe Verley; Susa Niiranen; Andrea Bryndum-Buchholz; Matthias Büchner; Derek P. Tittensor; Derek P. Tittensor; Jan Volkholz; John P. Dunne; Elizabeth A. Fulton; Julia L. Blanchard; Ricardo Oliveros-Ramos; Jacob Schewe; Simon Jennings; Simon Jennings; Manuel Barange; Charles A. Stock; Boris Worm; Miranda C. Jones; Nicola D. Walker; Laurent Bopp; Olivier Maury; Olivier Maury; William W. L. Cheung; Tiago H. Silva; Daniele Bianchi; Heike K. Lotze; Tilla Roy; Catherine M. Bulman; Tyler D. Eddy; Tyler D. Eddy; Nicolas Barrier; Marta Coll; Eric D. Galbraith; Eric D. Galbraith; Jose A. Fernandes; Yunne-Jai Shin; Yunne-Jai Shin;While the physical dimensions of climate change are now routinely assessed through multimodel intercomparisons, projected impacts on the global ocean ecosystem generally rely on individual models with a specific set of assumptions. To address these single-model limitations, we present standardized ensemble projections from six global marine ecosystem models forced with two Earth system models and four emission scenarios with and without fishing. We derive average biomass trends and associated uncertainties across the marine food web. Without fishing, mean global animal biomass decreased by 5% (±4% SD) under low emissions and 17% (±11% SD) under high emissions by 2100, with an average 5% decline for every 1 °C of warming. Projected biomass declines were primarily driven by increasing temperature and decreasing primary production, and were more pronounced at higher trophic levels, a process known as trophic amplification. Fishing did not substantially alter the effects of climate change. Considerable regional variation featured strong biomass increases at high latitudes and decreases at middle to low latitudes, with good model agreement on the direction of change but variable magnitude. Uncertainties due to variations in marine ecosystem and Earth system models were similar. Ensemble projections performed well compared with empirical data, emphasizing the benefits of multimodel inference to project future outcomes. Our results indicate that global ocean animal biomass consistently declines with climate change, and that these impacts are amplified at higher trophic levels. Next steps for model development include dynamic scenarios of fishing, cumulative human impacts, and the effects of management measures on future ocean biomass trends.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: University of East Anglia digital repositoryUniversity of California: eScholarshipArticle . 2019License: CC BY NC NDFull-Text: https://escholarship.org/uc/item/0tf378n8Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BY NC NDData sources: Diposit Digital de Documents de la UABeScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of CaliforniaArchiMer - Institutional Archive of IfremerOther literature type . 2019Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1900194116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 426 citations 426 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 387visibility views 387 download downloads 142 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: University of East Anglia digital repositoryUniversity of California: eScholarshipArticle . 2019License: CC BY NC NDFull-Text: https://escholarship.org/uc/item/0tf378n8Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BY NC NDData sources: Diposit Digital de Documents de la UABeScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of CaliforniaArchiMer - Institutional Archive of IfremerOther literature type . 2019Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1900194116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2018 United Kingdom, France, France, Spain, France, United Kingdom, France, Germany, France, Spain, United Kingdom, Canada, United Kingdom, FrancePublisher:Copernicus GmbH Funded by:EC | CERES, ARC | Discovery Projects - Gran..., EC | BIGSEA +2 projectsEC| CERES ,ARC| Discovery Projects - Grant ID: DP140101377 ,EC| BIGSEA ,EC| BIOWEB ,NSERCD. P. Tittensor; D. P. Tittensor; T. D. Eddy; T. D. Eddy; H. K. Lotze; E. D. Galbraith; E. D. Galbraith; W. Cheung; M. Barange; M. Barange; J. L. Blanchard; L. Bopp; A. Bryndum-Buchholz; M. Büchner; C. Bulman; D. A. Carozza; V. Christensen; M. Coll; M. Coll; M. Coll; J. P. Dunne; J. A. Fernandes; J. A. Fernandes; E. A. Fulton; E. A. Fulton; A. J. Hobday; A. J. Hobday; V. Huber; S. Jennings; S. Jennings; S. Jennings; M. Jones; P. Lehodey; J. S. Link; S. Mackinson; O. Maury; O. Maury; S. Niiranen; R. Oliveros-Ramos; T. Roy; T. Roy; J. Schewe; Y.-J. Shin; Y.-J. Shin; T. Silva; C. A. Stock; J. Steenbeek; P. J. Underwood; J. Volkholz; J. R. Watson; N. D. Walker;handle: 10261/165167
Abstract. Model intercomparison studies in the climate and Earth sciences communities have been crucial to building credibility and coherence for future projections. They have quantified variability among models, spurred model development, contrasted within- and among-model uncertainty, assessed model fits to historical data, and provided ensemble projections of future change under specified scenarios. Given the speed and magnitude of anthropogenic change in the marine environment and the consequent effects on food security, biodiversity, marine industries, and society, the time is ripe for similar comparisons among models of fisheries and marine ecosystems. Here, we describe the Fisheries and Marine Ecosystem Model Intercomparison Project protocol version 1.0 (Fish-MIP v1.0), part of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is a cross-sectoral network of climate impact modellers. Given the complexity of the marine ecosystem, this class of models has substantial heterogeneity of purpose, scope, theoretical underpinning, processes considered, parameterizations, resolution (grain size), and spatial extent. This heterogeneity reflects the lack of a unified understanding of the marine ecosystem and implies that the assemblage of all models is more likely to include a greater number of relevant processes than any single model. The current Fish-MIP protocol is designed to allow these heterogeneous models to be forced with common Earth System Model (ESM) Coupled Model Intercomparison Project Phase 5 (CMIP5) outputs under prescribed scenarios for historic (from the 1950s) and future (to 2100) time periods; it will be adapted to CMIP phase 6 (CMIP6) in future iterations. It also describes a standardized set of outputs for each participating Fish-MIP model to produce. This enables the broad characterization of differences between and uncertainties within models and projections when assessing climate and fisheries impacts on marine ecosystems and the services they provide. The systematic generation, collation, and comparison of results from Fish-MIP will inform an understanding of the range of plausible changes in marine ecosystems and improve our capacity to define and convey the strengths and weaknesses of model-based advice on future states of marine ecosystems and fisheries. Ultimately, Fish-MIP represents a step towards bringing together the marine ecosystem modelling community to produce consistent ensemble medium- and long-term projections of marine ecosystems.
Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2018License: CC BYData sources: CORE (RIOXX-UK Aggregator)University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-01806877Data sources: Bielefeld Academic Search Engine (BASE)Memorial University of Newfoundland: Research RepositoryArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-01806877Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018License: CC BYData sources: Diposit Digital de Documents de la UABArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of IfremerGeoscientific Model DevelopmentArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-11-1421-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 125 citations 125 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 82visibility views 82 download downloads 282 Powered bymore_vert Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2018License: CC BYData sources: CORE (RIOXX-UK Aggregator)University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-01806877Data sources: Bielefeld Academic Search Engine (BASE)Memorial University of Newfoundland: Research RepositoryArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-01806877Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018License: CC BYData sources: Diposit Digital de Documents de la UABArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of IfremerGeoscientific Model DevelopmentArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-11-1421-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 Australia, France, Australia, GermanyPublisher:Springer Science and Business Media LLC Funded by:NSERC, ARC | Discovery Projects - Gran...NSERC ,ARC| Discovery Projects - Grant ID: DP140101377Heike K. Lotze; David A. Carozza; Nicholas K. Dulvy; Reg Watson; Andrea Bryndum-Buchholz; Elizabeth A. Fulton; Elizabeth A. Fulton; Richard S. Cottrell; Lindsay Davidson; Olivier Maury; John P. Dunne; Kirsty L. Nash; Christoph Müller; Derek P. Tittensor; Julia L. Blanchard; Matthias Büchner; William W. L. Cheung; Tyler D. Eddy; Tyler D. Eddy; Simon Jennings; Simon Jennings; Eric D. Galbraith; Joshua Elliott;pmid: 29046559
Fisheries and aquaculture make a crucial contribution to global food security, nutrition and livelihoods. However, the UN Sustainable Development Goals separate marine and terrestrial food production sectors and ecosystems. To sustainably meet increasing global demands for fish, the interlinkages among goals within and across fisheries, aquaculture and agriculture sectors must be recognized and addressed along with their changing nature. Here, we assess and highlight development challenges for fisheries-dependent countries based on analyses of interactions and trade-offs between goals focusing on food, biodiversity and climate change. We demonstrate that some countries are likely to face double jeopardies in both fisheries and agriculture sectors under climate change. The strategies to mitigate these risks will be context-dependent, and will need to directly address the trade-offs among Sustainable Development Goals, such as halting biodiversity loss and reducing poverty. Countries with low adaptive capacity but increasing demand for food require greater support and capacity building to transition towards reconciling trade-offs. Necessary actions are context-dependent and include effective governance, improved management and conservation, maximizing societal and environmental benefits from trade, increased equitability of distribution and innovation in food production, including continued development of low input and low impact aquaculture.
Hyper Article en Lig... arrow_drop_down Nature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0258-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 195 citations 195 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Nature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0258-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 Australia, Australia, Spain, France, Spain, United KingdomPublisher:Wiley Funded by:NSERC, EC | BIGSEANSERC ,EC| BIGSEAWilliam W. L. Cheung; Marta Coll; Derek P. Tittensor; Derek P. Tittensor; Eric D. Galbraith; Eric D. Galbraith; Olivier Maury; Olivier Maury; Andrea Bryndum-Buchholz; Simon Jennings; Simon Jennings; Heike K. Lotze; Julia L. Blanchard;AbstractClimate change effects on marine ecosystems include impacts on primary production, ocean temperature, species distributions, and abundance at local to global scales. These changes will significantly alter marine ecosystem structure and function with associated socio‐economic impacts on ecosystem services, marine fisheries, and fishery‐dependent societies. Yet how these changes may play out among ocean basins over the 21st century remains unclear, with most projections coming from single ecosystem models that do not adequately capture the range of model uncertainty. We address this by using six marine ecosystem models within the Fisheries and Marine Ecosystem Model Intercomparison Project (Fish‐MIP) to analyze responses of marine animal biomass in all major ocean basins to contrasting climate change scenarios. Under a high emissions scenario (RCP8.5), total marine animal biomass declined by an ensemble mean of 15%–30% (±12%–17%) in the North and South Atlantic and Pacific, and the Indian Ocean by 2100, whereas polar ocean basins experienced a 20%–80% (±35%–200%) increase. Uncertainty and model disagreement were greatest in the Arctic and smallest in the South Pacific Ocean. Projected changes were reduced under a low (RCP2.6) emissions scenario. Under RCP2.6 and RCP8.5, biomass projections were highly correlated with changes in net primary production and negatively correlated with projected sea surface temperature increases across all ocean basins except the polar oceans. Ecosystem structure was projected to shift as animal biomass concentrated in different size‐classes across ocean basins and emissions scenarios. We highlight that climate change mitigation measures could moderate the impacts on marine animal biomass by reducing biomass declines in the Pacific, Atlantic, and Indian Ocean basins. The range of individual model projections emphasizes the importance of using an ensemble approach in assessing uncertainty of future change.
Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019Data sources: Diposit Digital de Documents de la UABArchiMer - Institutional Archive of IfremerOther literature type . 2019Data sources: ArchiMer - Institutional Archive of IfremerGlobal Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14512&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 161 citations 161 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 58visibility views 58 download downloads 352 Powered bymore_vert Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019Data sources: Diposit Digital de Documents de la UABArchiMer - Institutional Archive of IfremerOther literature type . 2019Data sources: ArchiMer - Institutional Archive of IfremerGlobal Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14512&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Australia, Australia, Spain, France, Spain, United States, Germany, France, France, France, France, France, Australia, Australia, France, France, Spain, Australia, SpainPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:EC | TRIATLAS, NSERC, ANR | SOMBEE +7 projectsEC| TRIATLAS ,NSERC ,ANR| SOMBEE ,UKRI| GCRF One Ocean Hub ,ARC| Discovery Projects - Grant ID: DP150102656 ,EC| MISSION ATLANTIC ,ARC| Discovery Projects - Grant ID: DP190102293 ,ARC| Discovery Projects - Grant ID: DP170104240 ,ANR| CIGOEF ,EC| FutureMARESHubert Du Pontavice; Jeroen Steenbeek; Cheryl S. Harrison; Cheryl S. Harrison; William W. L. Cheung; Nicolas Barrier; Camilla Novaglio; Jasmin G. John; Colleen M. Petrik; Villy Christensen; Derek P. Tittensor; Derek P. Tittensor; Gregory L. Britten; Charles A. Stock; Jose A. Fernandes-Salvador; Andrea Bryndum-Buchholz; Heike K. Lotze; Elizabeth A. Fulton; Elizabeth A. Fulton; Laurent Bopp; Matthias Büchner; Didier Gascuel; Jérôme Guiet; Ryan F. Heneghan; Yunne-Jai Shin; Jason D. Everett; Jason D. Everett; Jason D. Everett; Daniele Bianchi; Tyler D. Eddy; Jason S. Link; Kelly Ortega-Cisneros; Jonathan Rault; John P. Dunne; Olivier Maury; Marta Coll; Eric D. Galbraith; Anthony J. Richardson; Anthony J. Richardson; Julia L. Blanchard; Juliano Palacios-Abrantes; Juliano Palacios-Abrantes; Lynne J. Shannon;AbstractProjections of climate change impacts on marine ecosystems have revealed long-term declines in global marine animal biomass and unevenly distributed impacts on fisheries. Here we apply an enhanced suite of global marine ecosystem models from the Fisheries and Marine Ecosystem Model Intercomparison Project (Fish-MIP), forced by new-generation Earth system model outputs from Phase 6 of the Coupled Model Intercomparison Project (CMIP6), to provide insights into how projected climate change will affect future ocean ecosystems. Compared with the previous generation CMIP5-forced Fish-MIP ensemble, the new ensemble ecosystem simulations show a greater decline in mean global ocean animal biomass under both strong-mitigation and high-emissions scenarios due to elevated warming, despite greater uncertainty in net primary production in the high-emissions scenario. Regional shifts in the direction of biomass changes highlight the continued and urgent need to reduce uncertainty in the projected responses of marine ecosystems to climate change to help support adaptation planning.
Nature Climate Chang... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/0xg0m4hxData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10072/429472Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03475045Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03475045Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2021License: CC BYData sources: Diposit Digital de Documents de la UABHAL-Ecole des Ponts ParisTechArticle . 2021License: CC BYData sources: HAL-Ecole des Ponts ParisTecheScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01173-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 141 citations 141 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 54visibility views 54 download downloads 159 Powered bymore_vert Nature Climate Chang... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/0xg0m4hxData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10072/429472Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03475045Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03475045Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2021License: CC BYData sources: Diposit Digital de Documents de la UABHAL-Ecole des Ponts ParisTechArticle . 2021License: CC BYData sources: HAL-Ecole des Ponts ParisTecheScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01173-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 AustraliaPublisher:American Geophysical Union (AGU) Publicly fundedAuthors: Julia G. Mason; Andrea Bryndum‐Buchholz; Juliano Palacios‐Abrantes; Renuka Badhe; +8 AuthorsJulia G. Mason; Andrea Bryndum‐Buchholz; Juliano Palacios‐Abrantes; Renuka Badhe; Isabella Morgante; Daniele Bianchi; Julia L. Blanchard; Jason D. Everett; Cheryl S. Harrison; Ryan F. Heneghan; Camilla Novaglio; Colleen M. Petrik;AbstractEmerging fishing activity due to melting ice and poleward species distribution shifts in the rapidly‐warming Arctic Ocean challenges transboundary management and requires proactive governance. A 2021 moratorium on commercial fishing in the Arctic high seas provides a 16‐year runway for improved scientific understanding. Given substantial knowledge gaps, characterizing areas of highest uncertainty is a key first step. Marine ecosystem model ensembles that project future fish distributions could inform management of future Arctic fisheries, but Arctic‐specific variation has not yet been examined for global ensembles. We use the Fisheries and Marine Ecosystem Intercomparison Project ensemble driven by two Earth System Models (ESMs) under two Shared Socioeconomic Pathways (SSP1‐2.6 and SSP5‐8.5) to illustrate the current state of and uncertainty among biomass projections for the Arctic Ocean over the duration of the moratorium. The models generally project biomass increases in more northern Arctic ecosystems and decreases in southern ecosystems, but wide intra‐model variation exceeds projection means in most cases. The two ESMs show opposite trends for the main environmental drivers. Therefore, these projections are currently insufficient to inform policy actions. Investment in sustained monitoring and improving modeling capacity, especially for sea ice dynamics, is urgently needed. Concurrently, it will be necessary to develop frameworks for making precautionary decisions under continued uncertainty. We conclude that researchers should be transparent about uncertainty, presenting these model projections not as a source of scientific “answers,” but as bounding for plausible, policy‐relevant questions to assess trade‐offs and mitigate risks.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2024License: CC BY NC NDFull-Text: https://hdl.handle.net/10072/432738Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023ef004393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2024License: CC BY NC NDFull-Text: https://hdl.handle.net/10072/432738Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023ef004393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 Australia, Australia, Spain, FrancePublisher:Canadian Science Publishing Funded by:NSERC, EC | BIGSEANSERC ,EC| BIGSEAChristensen; Derek P. Tittensor; Olivier Maury; Olivier Maury; Andrea Bryndum-Buchholz; F Prentice; Julia L. Blanchard; Heike K. Lotze; Eric D. Galbraith; Eric D. Galbraith; Wwl Cheung;Under climate change, species composition and abundances in high-latitude waters are expected to substantially reconfigure with consequences for trophic relationships and ecosystem services. Outcomes are challenging to project at national scales, despite their importance for management decisions. Using an ensemble of six global marine ecosystem models we analyzed marine ecosystem responses to climate change from 1971 to 2099 in Canada’s Exclusive Economic Zone (EEZ) under four standardized emissions scenarios. By 2099, under business-as-usual emissions (RCP8.5) projected marine animal biomass declined by an average of −7.7% (±29.5%) within the Canadian EEZ, dominated by declines in the Pacific (−24% ± 24.5%) and Atlantic (−25.5% ± 9.5%) areas; these were partially compensated by increases in the Canadian Arctic (+26.2% ± 38.4%). Lower emissions scenarios projected successively smaller biomass changes, highlighting the benefits of stronger mitigation targets. Individual model projections were most consistent in the Atlantic and Pacific, but highly variable in the Arctic due to model uncertainties in polar regions. Different trajectories of future marine biomass changes will require regional-specific responses in conservation and management strategies, such as adaptive planning of marine protected areas and species-specific management plans, to enhance resilience and rebuilding of Canada’s marine ecosystems and commercial fish stocks.
FACETS arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020License: CC BYData sources: Diposit Digital de Documents de la UABArchiMer - Institutional Archive of IfremerOther literature type . 2020Data sources: ArchiMer - Institutional Archive of IfremerUniversity of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1139/facets-2019-0035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert FACETS arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020License: CC BYData sources: Diposit Digital de Documents de la UABArchiMer - Institutional Archive of IfremerOther literature type . 2020Data sources: ArchiMer - Institutional Archive of IfremerUniversity of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1139/facets-2019-0035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 Spain, France, United Kingdom, France, Australia, France, Germany, France, France, Australia, United States, Spain, FrancePublisher:Proceedings of the National Academy of Sciences Funded by:EC | BIGSEA, EC | CERES, NSERC +1 projectsEC| BIGSEA ,EC| CERES ,NSERC ,EC| MERCESDavid A. Carozza; Steve Mackinson; Jeroen Steenbeek; Villy Christensen; Philippe Verley; Susa Niiranen; Andrea Bryndum-Buchholz; Matthias Büchner; Derek P. Tittensor; Derek P. Tittensor; Jan Volkholz; John P. Dunne; Elizabeth A. Fulton; Julia L. Blanchard; Ricardo Oliveros-Ramos; Jacob Schewe; Simon Jennings; Simon Jennings; Manuel Barange; Charles A. Stock; Boris Worm; Miranda C. Jones; Nicola D. Walker; Laurent Bopp; Olivier Maury; Olivier Maury; William W. L. Cheung; Tiago H. Silva; Daniele Bianchi; Heike K. Lotze; Tilla Roy; Catherine M. Bulman; Tyler D. Eddy; Tyler D. Eddy; Nicolas Barrier; Marta Coll; Eric D. Galbraith; Eric D. Galbraith; Jose A. Fernandes; Yunne-Jai Shin; Yunne-Jai Shin;While the physical dimensions of climate change are now routinely assessed through multimodel intercomparisons, projected impacts on the global ocean ecosystem generally rely on individual models with a specific set of assumptions. To address these single-model limitations, we present standardized ensemble projections from six global marine ecosystem models forced with two Earth system models and four emission scenarios with and without fishing. We derive average biomass trends and associated uncertainties across the marine food web. Without fishing, mean global animal biomass decreased by 5% (±4% SD) under low emissions and 17% (±11% SD) under high emissions by 2100, with an average 5% decline for every 1 °C of warming. Projected biomass declines were primarily driven by increasing temperature and decreasing primary production, and were more pronounced at higher trophic levels, a process known as trophic amplification. Fishing did not substantially alter the effects of climate change. Considerable regional variation featured strong biomass increases at high latitudes and decreases at middle to low latitudes, with good model agreement on the direction of change but variable magnitude. Uncertainties due to variations in marine ecosystem and Earth system models were similar. Ensemble projections performed well compared with empirical data, emphasizing the benefits of multimodel inference to project future outcomes. Our results indicate that global ocean animal biomass consistently declines with climate change, and that these impacts are amplified at higher trophic levels. Next steps for model development include dynamic scenarios of fishing, cumulative human impacts, and the effects of management measures on future ocean biomass trends.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: University of East Anglia digital repositoryUniversity of California: eScholarshipArticle . 2019License: CC BY NC NDFull-Text: https://escholarship.org/uc/item/0tf378n8Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BY NC NDData sources: Diposit Digital de Documents de la UABeScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of CaliforniaArchiMer - Institutional Archive of IfremerOther literature type . 2019Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1900194116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 426 citations 426 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 387visibility views 387 download downloads 142 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: University of East Anglia digital repositoryUniversity of California: eScholarshipArticle . 2019License: CC BY NC NDFull-Text: https://escholarship.org/uc/item/0tf378n8Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BY NC NDData sources: Diposit Digital de Documents de la UABeScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of CaliforniaArchiMer - Institutional Archive of IfremerOther literature type . 2019Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1900194116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2018 United Kingdom, France, France, Spain, France, United Kingdom, France, Germany, France, Spain, United Kingdom, Canada, United Kingdom, FrancePublisher:Copernicus GmbH Funded by:EC | CERES, ARC | Discovery Projects - Gran..., EC | BIGSEA +2 projectsEC| CERES ,ARC| Discovery Projects - Grant ID: DP140101377 ,EC| BIGSEA ,EC| BIOWEB ,NSERCD. P. Tittensor; D. P. Tittensor; T. D. Eddy; T. D. Eddy; H. K. Lotze; E. D. Galbraith; E. D. Galbraith; W. Cheung; M. Barange; M. Barange; J. L. Blanchard; L. Bopp; A. Bryndum-Buchholz; M. Büchner; C. Bulman; D. A. Carozza; V. Christensen; M. Coll; M. Coll; M. Coll; J. P. Dunne; J. A. Fernandes; J. A. Fernandes; E. A. Fulton; E. A. Fulton; A. J. Hobday; A. J. Hobday; V. Huber; S. Jennings; S. Jennings; S. Jennings; M. Jones; P. Lehodey; J. S. Link; S. Mackinson; O. Maury; O. Maury; S. Niiranen; R. Oliveros-Ramos; T. Roy; T. Roy; J. Schewe; Y.-J. Shin; Y.-J. Shin; T. Silva; C. A. Stock; J. Steenbeek; P. J. Underwood; J. Volkholz; J. R. Watson; N. D. Walker;handle: 10261/165167
Abstract. Model intercomparison studies in the climate and Earth sciences communities have been crucial to building credibility and coherence for future projections. They have quantified variability among models, spurred model development, contrasted within- and among-model uncertainty, assessed model fits to historical data, and provided ensemble projections of future change under specified scenarios. Given the speed and magnitude of anthropogenic change in the marine environment and the consequent effects on food security, biodiversity, marine industries, and society, the time is ripe for similar comparisons among models of fisheries and marine ecosystems. Here, we describe the Fisheries and Marine Ecosystem Model Intercomparison Project protocol version 1.0 (Fish-MIP v1.0), part of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is a cross-sectoral network of climate impact modellers. Given the complexity of the marine ecosystem, this class of models has substantial heterogeneity of purpose, scope, theoretical underpinning, processes considered, parameterizations, resolution (grain size), and spatial extent. This heterogeneity reflects the lack of a unified understanding of the marine ecosystem and implies that the assemblage of all models is more likely to include a greater number of relevant processes than any single model. The current Fish-MIP protocol is designed to allow these heterogeneous models to be forced with common Earth System Model (ESM) Coupled Model Intercomparison Project Phase 5 (CMIP5) outputs under prescribed scenarios for historic (from the 1950s) and future (to 2100) time periods; it will be adapted to CMIP phase 6 (CMIP6) in future iterations. It also describes a standardized set of outputs for each participating Fish-MIP model to produce. This enables the broad characterization of differences between and uncertainties within models and projections when assessing climate and fisheries impacts on marine ecosystems and the services they provide. The systematic generation, collation, and comparison of results from Fish-MIP will inform an understanding of the range of plausible changes in marine ecosystems and improve our capacity to define and convey the strengths and weaknesses of model-based advice on future states of marine ecosystems and fisheries. Ultimately, Fish-MIP represents a step towards bringing together the marine ecosystem modelling community to produce consistent ensemble medium- and long-term projections of marine ecosystems.
Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2018License: CC BYData sources: CORE (RIOXX-UK Aggregator)University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-01806877Data sources: Bielefeld Academic Search Engine (BASE)Memorial University of Newfoundland: Research RepositoryArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-01806877Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018License: CC BYData sources: Diposit Digital de Documents de la UABArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of IfremerGeoscientific Model DevelopmentArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-11-1421-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 125 citations 125 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 82visibility views 82 download downloads 282 Powered bymore_vert Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2018License: CC BYData sources: CORE (RIOXX-UK Aggregator)University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-01806877Data sources: Bielefeld Academic Search Engine (BASE)Memorial University of Newfoundland: Research RepositoryArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-01806877Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018License: CC BYData sources: Diposit Digital de Documents de la UABArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of IfremerGeoscientific Model DevelopmentArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-11-1421-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 Australia, France, Australia, GermanyPublisher:Springer Science and Business Media LLC Funded by:NSERC, ARC | Discovery Projects - Gran...NSERC ,ARC| Discovery Projects - Grant ID: DP140101377Heike K. Lotze; David A. Carozza; Nicholas K. Dulvy; Reg Watson; Andrea Bryndum-Buchholz; Elizabeth A. Fulton; Elizabeth A. Fulton; Richard S. Cottrell; Lindsay Davidson; Olivier Maury; John P. Dunne; Kirsty L. Nash; Christoph Müller; Derek P. Tittensor; Julia L. Blanchard; Matthias Büchner; William W. L. Cheung; Tyler D. Eddy; Tyler D. Eddy; Simon Jennings; Simon Jennings; Eric D. Galbraith; Joshua Elliott;pmid: 29046559
Fisheries and aquaculture make a crucial contribution to global food security, nutrition and livelihoods. However, the UN Sustainable Development Goals separate marine and terrestrial food production sectors and ecosystems. To sustainably meet increasing global demands for fish, the interlinkages among goals within and across fisheries, aquaculture and agriculture sectors must be recognized and addressed along with their changing nature. Here, we assess and highlight development challenges for fisheries-dependent countries based on analyses of interactions and trade-offs between goals focusing on food, biodiversity and climate change. We demonstrate that some countries are likely to face double jeopardies in both fisheries and agriculture sectors under climate change. The strategies to mitigate these risks will be context-dependent, and will need to directly address the trade-offs among Sustainable Development Goals, such as halting biodiversity loss and reducing poverty. Countries with low adaptive capacity but increasing demand for food require greater support and capacity building to transition towards reconciling trade-offs. Necessary actions are context-dependent and include effective governance, improved management and conservation, maximizing societal and environmental benefits from trade, increased equitability of distribution and innovation in food production, including continued development of low input and low impact aquaculture.
Hyper Article en Lig... arrow_drop_down Nature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0258-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 195 citations 195 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Nature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0258-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu