- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Germany, France, France, Canada, United States, France, FrancePublisher:Public Library of Science (PLoS) Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP190102293Authors: Guibourd de Luzinais, Vianney; Du Pontavice, Hubert; Reygondeau, Gabriel; Barrier, Nicolas; +14 AuthorsGuibourd de Luzinais, Vianney; Du Pontavice, Hubert; Reygondeau, Gabriel; Barrier, Nicolas; Blanchard, Julia; Bornarel, Virginie; Büchner, Matthias; Cheung, William; Eddy, Tyler; Everett, Jason; Guiet, Jerome; Harrison, Cheryl; Maury, Olivier; Novaglio, Camilla; Petrik, Colleen; Steenbeek, Jeroen; Tittensor, Derek; Gascuel, Didier;Marine animal biomass is expected to decrease in the 21st century due to climate driven changes in ocean environmental conditions. Previous studies suggest that the magnitude of the decline in primary production on apex predators could be amplified through the trophodynamics of marine food webs, leading to larger decreases in the biomass of predators relative to the decrease in primary production, a mechanism called trophic amplification. We compared relative changes in producer and consumer biomass or production in the global ocean to assess the extent of trophic amplification. We used simulations from nine marine ecosystem models (MEMs) from the Fisheries and Marine Ecosystem Models Intercomparison Project forced by two Earth System Models under the high greenhouse gas emissions Shared Socioeconomic Pathways (SSP5-8.5) and a scenario of no fishing. Globally, total consumer biomass is projected to decrease by 16.7 ± 9.5% more than net primary production (NPP) by 2090–2099 relative to 1995–2014, with substantial variations among MEMs and regions. Total consumer biomass is projected to decrease almost everywhere in the ocean (80% of the world’s oceans) in the model ensemble. In 40% of the world’s oceans, consumer biomass was projected to decrease more than NPP. Additionally, in another 36% of the world’s oceans consumer biomass is expected to decrease even as projected NPP increases. By analysing the biomass response within food webs in available MEMs, we found that model parameters and structures contributed to more complex responses than a consistent amplification of climate impacts of higher trophic levels. Our study provides additional insights into the ecological mechanisms that will impact marine ecosystems, thereby informing model and scenario development.
Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Full-Text: https://doi.org/10.48364/ISIMIP.575744.1Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/6q46w4n5Data sources: Bielefeld Academic Search Engine (BASE)Memorial University of Newfoundland: Research RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaArchiMer - Institutional Archive of IfremerOther literature type . 2023Data sources: ArchiMer - Institutional Archive of IfremerPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0287570&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Full-Text: https://doi.org/10.48364/ISIMIP.575744.1Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/6q46w4n5Data sources: Bielefeld Academic Search Engine (BASE)Memorial University of Newfoundland: Research RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaArchiMer - Institutional Archive of IfremerOther literature type . 2023Data sources: ArchiMer - Institutional Archive of IfremerPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0287570&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Review , Other literature type 2021 Australia, Australia, France, United States, France, Spain, France, Australia, Australia, Australia, Spain, France, GermanyPublisher:Elsevier BV Funded by:EC | FutureMARES, ANR | CIGOEF, EC | TRIATLAS +3 projectsEC| FutureMARES ,ANR| CIGOEF ,EC| TRIATLAS ,ARC| Discovery Projects - Grant ID: DP150102656 ,ARC| Discovery Projects - Grant ID: DP190102293 ,EC| BIGSEAJeroen Steenbeek; Jan Volkholz; Derek P. Tittensor; William W. L. Cheung; Hubert Du Pontavice; Cheryl S. Harrison; Didier Gascuel; Jérôme Guiet; Ryan F. Heneghan; Ryan F. Heneghan; Colleen M. Petrik; Catherine M. Bulman; Jose A. Fernandes-Salvador; Nicolas Barrier; Olivier Maury; Julia L. Blanchard; Juliano Palacios-Abrantes; Travis C. Tai; Jason D. Everett; Jason D. Everett; Jason D. Everett; Marta Coll; Eric D. Galbraith; Eric D. Galbraith; Anthony J. Richardson; Anthony J. Richardson; Phoebe A. Woodworth-Jefcoats; Maite Erauskin-Extramiana; Tyler D. Eddy;handle: 10261/249690 , 10072/429165
Climate change is warming the ocean and impacting lower trophic level (LTL) organisms. Marine ecosystem models can provide estimates of how these changes will propagate to larger animals and impact societal services such as fisheries, but at present these estimates vary widely. A better understanding of what drives this inter-model variation will improve our ability to project fisheries and other ecosystem services into the future, while also helping to identify uncertainties in process understanding. Here, we explore the mechanisms that underlie the diversity of responses to changes in temperature and LTLs in eight global marine ecosystem models from the Fisheries and Marine Ecosystem Model Intercomparison Project (FishMIP). Temperature and LTL impacts on total consumer biomass and ecosystem structure (defined as the relative change of small and large organism biomass) were isolated using a comparative experimental protocol. Total model biomass varied between −35% to +3% in response to warming, and -17% to +15% in response to LTL changes. There was little consensus about the spatial redistribution of biomass or changes in the balance between small and large organisms (ecosystem structure) in response to warming, an LTL impacts on total consumer biomass varied depending on the choice of LTL forcing terms. Overall, climate change impacts on consumer biomass and ecosystem structure are well approximated by the sum of temperature and LTL impacts, indicating an absence of nonlinear interaction between the models' drivers. Our results highlight a lack of theoretical clarity about how to represent fundamental ecological mechanisms, most importantly how temperature impacts scale from individual to ecosystem level, and the need to better understand the two-way coupling between LTL organisms and consumers. We finish by identifying future research needs to strengthen global marine ecosystem modelling and improve projections of climate change impacts.
Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10072/429165Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/195122vhData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2021License: CC BYData sources: Diposit Digital de Documents de la UABArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaProgress In OceanographyArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pocean.2021.102659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 64 citations 64 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 65visibility views 65 download downloads 104 Powered bymore_vert Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10072/429165Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/195122vhData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2021License: CC BYData sources: Diposit Digital de Documents de la UABArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaProgress In OceanographyArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pocean.2021.102659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FrancePublisher:Elsevier BV Funded by:NSF | Collaborative Research: G..., NSF | Collaborative Research: E..., ARC | Discovery Projects - Gran...NSF| Collaborative Research: GCR: Generating Actionable Research to Investigate Combined Climate Intervention Strategies for Stakeholder Use ,NSF| Collaborative Research: Evaluating Climate Change and Kill Mechanisms Associated with the End-Cretaceous Mass Extinction: A Model-Data Comparison Approach ,ARC| Discovery Projects - Grant ID: DP230102359Schoeman, David; Gupta, Alex Sen; Harrison, Cheryl; Everett, Jason; Brito-Morales, Isaac; Hannah, Lee; Bopp, Laurent; Roehrdanz, Patrick; Richardson, Anthony;pmid: 37179171
For each assessment cycle of the Intergovernmental Panel on Climate Change (IPCC), researchers in the life sciences are called upon to provide evidence to policymakers planning for a changing future. This research increasingly relies on highly technical and complex outputs from climate models. The strengths and weaknesses of these data may not be fully appreciated beyond the climate modelling community; therefore, uninformed use of raw or preprocessed climate data could lead to overconfident or spurious conclusions. We provide an accessible introduction to climate model outputs that is intended to empower the life science community to robustly address questions about human and natural systems in a changing world.
Trends in Ecology & ... arrow_drop_down Trends in Ecology & EvolutionArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2023.04.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Trends in Ecology & ... arrow_drop_down Trends in Ecology & EvolutionArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2023.04.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Australia, Australia, Spain, France, Spain, United States, Germany, France, France, France, France, France, Australia, Australia, France, France, Spain, Australia, SpainPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:EC | TRIATLAS, NSERC, ANR | SOMBEE +7 projectsEC| TRIATLAS ,NSERC ,ANR| SOMBEE ,UKRI| GCRF One Ocean Hub ,ARC| Discovery Projects - Grant ID: DP150102656 ,EC| MISSION ATLANTIC ,ARC| Discovery Projects - Grant ID: DP190102293 ,ARC| Discovery Projects - Grant ID: DP170104240 ,ANR| CIGOEF ,EC| FutureMARESHubert Du Pontavice; Jeroen Steenbeek; Cheryl S. Harrison; Cheryl S. Harrison; William W. L. Cheung; Nicolas Barrier; Camilla Novaglio; Jasmin G. John; Colleen M. Petrik; Villy Christensen; Derek P. Tittensor; Derek P. Tittensor; Gregory L. Britten; Charles A. Stock; Jose A. Fernandes-Salvador; Andrea Bryndum-Buchholz; Heike K. Lotze; Elizabeth A. Fulton; Elizabeth A. Fulton; Laurent Bopp; Matthias Büchner; Didier Gascuel; Jérôme Guiet; Ryan F. Heneghan; Yunne-Jai Shin; Jason D. Everett; Jason D. Everett; Jason D. Everett; Daniele Bianchi; Tyler D. Eddy; Jason S. Link; Kelly Ortega-Cisneros; Jonathan Rault; John P. Dunne; Olivier Maury; Marta Coll; Eric D. Galbraith; Anthony J. Richardson; Anthony J. Richardson; Julia L. Blanchard; Juliano Palacios-Abrantes; Juliano Palacios-Abrantes; Lynne J. Shannon;AbstractProjections of climate change impacts on marine ecosystems have revealed long-term declines in global marine animal biomass and unevenly distributed impacts on fisheries. Here we apply an enhanced suite of global marine ecosystem models from the Fisheries and Marine Ecosystem Model Intercomparison Project (Fish-MIP), forced by new-generation Earth system model outputs from Phase 6 of the Coupled Model Intercomparison Project (CMIP6), to provide insights into how projected climate change will affect future ocean ecosystems. Compared with the previous generation CMIP5-forced Fish-MIP ensemble, the new ensemble ecosystem simulations show a greater decline in mean global ocean animal biomass under both strong-mitigation and high-emissions scenarios due to elevated warming, despite greater uncertainty in net primary production in the high-emissions scenario. Regional shifts in the direction of biomass changes highlight the continued and urgent need to reduce uncertainty in the projected responses of marine ecosystems to climate change to help support adaptation planning.
Nature Climate Chang... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/0xg0m4hxData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10072/429472Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03475045Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03475045Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2021License: CC BYData sources: Diposit Digital de Documents de la UABHAL-Ecole des Ponts ParisTechArticle . 2021License: CC BYData sources: HAL-Ecole des Ponts ParisTecheScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01173-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 141 citations 141 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 54visibility views 54 download downloads 159 Powered bymore_vert Nature Climate Chang... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/0xg0m4hxData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10072/429472Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03475045Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03475045Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2021License: CC BYData sources: Diposit Digital de Documents de la UABHAL-Ecole des Ponts ParisTechArticle . 2021License: CC BYData sources: HAL-Ecole des Ponts ParisTecheScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01173-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 AustraliaPublisher:American Geophysical Union (AGU) Publicly fundedAuthors: Julia G. Mason; Andrea Bryndum‐Buchholz; Juliano Palacios‐Abrantes; Renuka Badhe; +8 AuthorsJulia G. Mason; Andrea Bryndum‐Buchholz; Juliano Palacios‐Abrantes; Renuka Badhe; Isabella Morgante; Daniele Bianchi; Julia L. Blanchard; Jason D. Everett; Cheryl S. Harrison; Ryan F. Heneghan; Camilla Novaglio; Colleen M. Petrik;AbstractEmerging fishing activity due to melting ice and poleward species distribution shifts in the rapidly‐warming Arctic Ocean challenges transboundary management and requires proactive governance. A 2021 moratorium on commercial fishing in the Arctic high seas provides a 16‐year runway for improved scientific understanding. Given substantial knowledge gaps, characterizing areas of highest uncertainty is a key first step. Marine ecosystem model ensembles that project future fish distributions could inform management of future Arctic fisheries, but Arctic‐specific variation has not yet been examined for global ensembles. We use the Fisheries and Marine Ecosystem Intercomparison Project ensemble driven by two Earth System Models (ESMs) under two Shared Socioeconomic Pathways (SSP1‐2.6 and SSP5‐8.5) to illustrate the current state of and uncertainty among biomass projections for the Arctic Ocean over the duration of the moratorium. The models generally project biomass increases in more northern Arctic ecosystems and decreases in southern ecosystems, but wide intra‐model variation exceeds projection means in most cases. The two ESMs show opposite trends for the main environmental drivers. Therefore, these projections are currently insufficient to inform policy actions. Investment in sustained monitoring and improving modeling capacity, especially for sea ice dynamics, is urgently needed. Concurrently, it will be necessary to develop frameworks for making precautionary decisions under continued uncertainty. We conclude that researchers should be transparent about uncertainty, presenting these model projections not as a source of scientific “answers,” but as bounding for plausible, policy‐relevant questions to assess trade‐offs and mitigate risks.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2024License: CC BY NC NDFull-Text: https://hdl.handle.net/10072/432738Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023ef004393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2024License: CC BY NC NDFull-Text: https://hdl.handle.net/10072/432738Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023ef004393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Spain, GermanyPublisher:Proceedings of the National Academy of Sciences Funded by:UKRI | EcoLowNOx: Auxiliary Comb..., EC | BIGSEAUKRI| EcoLowNOx: Auxiliary Combustion System for Efficient Combustion with Low-NOx emissions for Foundation Industries ,EC| BIGSEAAlan Robock; Lili Xia; Joshua Coupe; Jessica Stevens; Ryan F. Heneghan; Owen B. Toon; Owen B. Toon; Nicole S. Lovenduski; Samantha Stevenson; Charles G. Bardeen; Charles G. Bardeen; Eric D. Galbraith; Eric D. Galbraith; Cheryl S. Harrison; Cheryl S. Harrison; August Luna; Jonas Jägermeyr; Jonas Jägermeyr; Kim J. N. Scherrer;SignificanceNuclear conflict poses the chilling prospect of triggering abrupt global cooling, and consequently, severely reduced crop production. However, the impacts on marine fisheries are unknown. If agricultural yields fall on land, could we turn to the sea instead? Here, we show that agricultural losses could not be offset by the world’s fisheries, especially given widespread overfishing. Cold temperatures and reduced sunlight would decrease the growth of fish biomass, at worst as much as under unmitigated climate change. Although intensified postwar fishing could yield a small catch increase, dramatic declines would ensue due to overharvesting. However, effective prewar fisheries management would create a substantial buffer of fish in the ocean, greatly increasing the oceans’ potential contribution during a global food emergency.
Proceedings of the N... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020License: CC BY NC NDData sources: Diposit Digital de Documents de la UABProceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2008256117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020License: CC BY NC NDData sources: Diposit Digital de Documents de la UABProceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2008256117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Germany, France, France, Canada, United States, France, FrancePublisher:Public Library of Science (PLoS) Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP190102293Authors: Guibourd de Luzinais, Vianney; Du Pontavice, Hubert; Reygondeau, Gabriel; Barrier, Nicolas; +14 AuthorsGuibourd de Luzinais, Vianney; Du Pontavice, Hubert; Reygondeau, Gabriel; Barrier, Nicolas; Blanchard, Julia; Bornarel, Virginie; Büchner, Matthias; Cheung, William; Eddy, Tyler; Everett, Jason; Guiet, Jerome; Harrison, Cheryl; Maury, Olivier; Novaglio, Camilla; Petrik, Colleen; Steenbeek, Jeroen; Tittensor, Derek; Gascuel, Didier;Marine animal biomass is expected to decrease in the 21st century due to climate driven changes in ocean environmental conditions. Previous studies suggest that the magnitude of the decline in primary production on apex predators could be amplified through the trophodynamics of marine food webs, leading to larger decreases in the biomass of predators relative to the decrease in primary production, a mechanism called trophic amplification. We compared relative changes in producer and consumer biomass or production in the global ocean to assess the extent of trophic amplification. We used simulations from nine marine ecosystem models (MEMs) from the Fisheries and Marine Ecosystem Models Intercomparison Project forced by two Earth System Models under the high greenhouse gas emissions Shared Socioeconomic Pathways (SSP5-8.5) and a scenario of no fishing. Globally, total consumer biomass is projected to decrease by 16.7 ± 9.5% more than net primary production (NPP) by 2090–2099 relative to 1995–2014, with substantial variations among MEMs and regions. Total consumer biomass is projected to decrease almost everywhere in the ocean (80% of the world’s oceans) in the model ensemble. In 40% of the world’s oceans, consumer biomass was projected to decrease more than NPP. Additionally, in another 36% of the world’s oceans consumer biomass is expected to decrease even as projected NPP increases. By analysing the biomass response within food webs in available MEMs, we found that model parameters and structures contributed to more complex responses than a consistent amplification of climate impacts of higher trophic levels. Our study provides additional insights into the ecological mechanisms that will impact marine ecosystems, thereby informing model and scenario development.
Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Full-Text: https://doi.org/10.48364/ISIMIP.575744.1Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/6q46w4n5Data sources: Bielefeld Academic Search Engine (BASE)Memorial University of Newfoundland: Research RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaArchiMer - Institutional Archive of IfremerOther literature type . 2023Data sources: ArchiMer - Institutional Archive of IfremerPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0287570&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Full-Text: https://doi.org/10.48364/ISIMIP.575744.1Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/6q46w4n5Data sources: Bielefeld Academic Search Engine (BASE)Memorial University of Newfoundland: Research RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaArchiMer - Institutional Archive of IfremerOther literature type . 2023Data sources: ArchiMer - Institutional Archive of IfremerPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0287570&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Review , Other literature type 2021 Australia, Australia, France, United States, France, Spain, France, Australia, Australia, Australia, Spain, France, GermanyPublisher:Elsevier BV Funded by:EC | FutureMARES, ANR | CIGOEF, EC | TRIATLAS +3 projectsEC| FutureMARES ,ANR| CIGOEF ,EC| TRIATLAS ,ARC| Discovery Projects - Grant ID: DP150102656 ,ARC| Discovery Projects - Grant ID: DP190102293 ,EC| BIGSEAJeroen Steenbeek; Jan Volkholz; Derek P. Tittensor; William W. L. Cheung; Hubert Du Pontavice; Cheryl S. Harrison; Didier Gascuel; Jérôme Guiet; Ryan F. Heneghan; Ryan F. Heneghan; Colleen M. Petrik; Catherine M. Bulman; Jose A. Fernandes-Salvador; Nicolas Barrier; Olivier Maury; Julia L. Blanchard; Juliano Palacios-Abrantes; Travis C. Tai; Jason D. Everett; Jason D. Everett; Jason D. Everett; Marta Coll; Eric D. Galbraith; Eric D. Galbraith; Anthony J. Richardson; Anthony J. Richardson; Phoebe A. Woodworth-Jefcoats; Maite Erauskin-Extramiana; Tyler D. Eddy;handle: 10261/249690 , 10072/429165
Climate change is warming the ocean and impacting lower trophic level (LTL) organisms. Marine ecosystem models can provide estimates of how these changes will propagate to larger animals and impact societal services such as fisheries, but at present these estimates vary widely. A better understanding of what drives this inter-model variation will improve our ability to project fisheries and other ecosystem services into the future, while also helping to identify uncertainties in process understanding. Here, we explore the mechanisms that underlie the diversity of responses to changes in temperature and LTLs in eight global marine ecosystem models from the Fisheries and Marine Ecosystem Model Intercomparison Project (FishMIP). Temperature and LTL impacts on total consumer biomass and ecosystem structure (defined as the relative change of small and large organism biomass) were isolated using a comparative experimental protocol. Total model biomass varied between −35% to +3% in response to warming, and -17% to +15% in response to LTL changes. There was little consensus about the spatial redistribution of biomass or changes in the balance between small and large organisms (ecosystem structure) in response to warming, an LTL impacts on total consumer biomass varied depending on the choice of LTL forcing terms. Overall, climate change impacts on consumer biomass and ecosystem structure are well approximated by the sum of temperature and LTL impacts, indicating an absence of nonlinear interaction between the models' drivers. Our results highlight a lack of theoretical clarity about how to represent fundamental ecological mechanisms, most importantly how temperature impacts scale from individual to ecosystem level, and the need to better understand the two-way coupling between LTL organisms and consumers. We finish by identifying future research needs to strengthen global marine ecosystem modelling and improve projections of climate change impacts.
Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10072/429165Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/195122vhData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2021License: CC BYData sources: Diposit Digital de Documents de la UABArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaProgress In OceanographyArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pocean.2021.102659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 64 citations 64 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 65visibility views 65 download downloads 104 Powered bymore_vert Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10072/429165Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/195122vhData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2021License: CC BYData sources: Diposit Digital de Documents de la UABArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaProgress In OceanographyArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pocean.2021.102659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FrancePublisher:Elsevier BV Funded by:NSF | Collaborative Research: G..., NSF | Collaborative Research: E..., ARC | Discovery Projects - Gran...NSF| Collaborative Research: GCR: Generating Actionable Research to Investigate Combined Climate Intervention Strategies for Stakeholder Use ,NSF| Collaborative Research: Evaluating Climate Change and Kill Mechanisms Associated with the End-Cretaceous Mass Extinction: A Model-Data Comparison Approach ,ARC| Discovery Projects - Grant ID: DP230102359Schoeman, David; Gupta, Alex Sen; Harrison, Cheryl; Everett, Jason; Brito-Morales, Isaac; Hannah, Lee; Bopp, Laurent; Roehrdanz, Patrick; Richardson, Anthony;pmid: 37179171
For each assessment cycle of the Intergovernmental Panel on Climate Change (IPCC), researchers in the life sciences are called upon to provide evidence to policymakers planning for a changing future. This research increasingly relies on highly technical and complex outputs from climate models. The strengths and weaknesses of these data may not be fully appreciated beyond the climate modelling community; therefore, uninformed use of raw or preprocessed climate data could lead to overconfident or spurious conclusions. We provide an accessible introduction to climate model outputs that is intended to empower the life science community to robustly address questions about human and natural systems in a changing world.
Trends in Ecology & ... arrow_drop_down Trends in Ecology & EvolutionArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2023.04.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Trends in Ecology & ... arrow_drop_down Trends in Ecology & EvolutionArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2023.04.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Australia, Australia, Spain, France, Spain, United States, Germany, France, France, France, France, France, Australia, Australia, France, France, Spain, Australia, SpainPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:EC | TRIATLAS, NSERC, ANR | SOMBEE +7 projectsEC| TRIATLAS ,NSERC ,ANR| SOMBEE ,UKRI| GCRF One Ocean Hub ,ARC| Discovery Projects - Grant ID: DP150102656 ,EC| MISSION ATLANTIC ,ARC| Discovery Projects - Grant ID: DP190102293 ,ARC| Discovery Projects - Grant ID: DP170104240 ,ANR| CIGOEF ,EC| FutureMARESHubert Du Pontavice; Jeroen Steenbeek; Cheryl S. Harrison; Cheryl S. Harrison; William W. L. Cheung; Nicolas Barrier; Camilla Novaglio; Jasmin G. John; Colleen M. Petrik; Villy Christensen; Derek P. Tittensor; Derek P. Tittensor; Gregory L. Britten; Charles A. Stock; Jose A. Fernandes-Salvador; Andrea Bryndum-Buchholz; Heike K. Lotze; Elizabeth A. Fulton; Elizabeth A. Fulton; Laurent Bopp; Matthias Büchner; Didier Gascuel; Jérôme Guiet; Ryan F. Heneghan; Yunne-Jai Shin; Jason D. Everett; Jason D. Everett; Jason D. Everett; Daniele Bianchi; Tyler D. Eddy; Jason S. Link; Kelly Ortega-Cisneros; Jonathan Rault; John P. Dunne; Olivier Maury; Marta Coll; Eric D. Galbraith; Anthony J. Richardson; Anthony J. Richardson; Julia L. Blanchard; Juliano Palacios-Abrantes; Juliano Palacios-Abrantes; Lynne J. Shannon;AbstractProjections of climate change impacts on marine ecosystems have revealed long-term declines in global marine animal biomass and unevenly distributed impacts on fisheries. Here we apply an enhanced suite of global marine ecosystem models from the Fisheries and Marine Ecosystem Model Intercomparison Project (Fish-MIP), forced by new-generation Earth system model outputs from Phase 6 of the Coupled Model Intercomparison Project (CMIP6), to provide insights into how projected climate change will affect future ocean ecosystems. Compared with the previous generation CMIP5-forced Fish-MIP ensemble, the new ensemble ecosystem simulations show a greater decline in mean global ocean animal biomass under both strong-mitigation and high-emissions scenarios due to elevated warming, despite greater uncertainty in net primary production in the high-emissions scenario. Regional shifts in the direction of biomass changes highlight the continued and urgent need to reduce uncertainty in the projected responses of marine ecosystems to climate change to help support adaptation planning.
Nature Climate Chang... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/0xg0m4hxData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10072/429472Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03475045Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03475045Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2021License: CC BYData sources: Diposit Digital de Documents de la UABHAL-Ecole des Ponts ParisTechArticle . 2021License: CC BYData sources: HAL-Ecole des Ponts ParisTecheScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01173-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 141 citations 141 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 54visibility views 54 download downloads 159 Powered bymore_vert Nature Climate Chang... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/0xg0m4hxData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10072/429472Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03475045Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03475045Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2021License: CC BYData sources: Diposit Digital de Documents de la UABHAL-Ecole des Ponts ParisTechArticle . 2021License: CC BYData sources: HAL-Ecole des Ponts ParisTecheScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01173-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 AustraliaPublisher:American Geophysical Union (AGU) Publicly fundedAuthors: Julia G. Mason; Andrea Bryndum‐Buchholz; Juliano Palacios‐Abrantes; Renuka Badhe; +8 AuthorsJulia G. Mason; Andrea Bryndum‐Buchholz; Juliano Palacios‐Abrantes; Renuka Badhe; Isabella Morgante; Daniele Bianchi; Julia L. Blanchard; Jason D. Everett; Cheryl S. Harrison; Ryan F. Heneghan; Camilla Novaglio; Colleen M. Petrik;AbstractEmerging fishing activity due to melting ice and poleward species distribution shifts in the rapidly‐warming Arctic Ocean challenges transboundary management and requires proactive governance. A 2021 moratorium on commercial fishing in the Arctic high seas provides a 16‐year runway for improved scientific understanding. Given substantial knowledge gaps, characterizing areas of highest uncertainty is a key first step. Marine ecosystem model ensembles that project future fish distributions could inform management of future Arctic fisheries, but Arctic‐specific variation has not yet been examined for global ensembles. We use the Fisheries and Marine Ecosystem Intercomparison Project ensemble driven by two Earth System Models (ESMs) under two Shared Socioeconomic Pathways (SSP1‐2.6 and SSP5‐8.5) to illustrate the current state of and uncertainty among biomass projections for the Arctic Ocean over the duration of the moratorium. The models generally project biomass increases in more northern Arctic ecosystems and decreases in southern ecosystems, but wide intra‐model variation exceeds projection means in most cases. The two ESMs show opposite trends for the main environmental drivers. Therefore, these projections are currently insufficient to inform policy actions. Investment in sustained monitoring and improving modeling capacity, especially for sea ice dynamics, is urgently needed. Concurrently, it will be necessary to develop frameworks for making precautionary decisions under continued uncertainty. We conclude that researchers should be transparent about uncertainty, presenting these model projections not as a source of scientific “answers,” but as bounding for plausible, policy‐relevant questions to assess trade‐offs and mitigate risks.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2024License: CC BY NC NDFull-Text: https://hdl.handle.net/10072/432738Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023ef004393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2024License: CC BY NC NDFull-Text: https://hdl.handle.net/10072/432738Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023ef004393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Spain, GermanyPublisher:Proceedings of the National Academy of Sciences Funded by:UKRI | EcoLowNOx: Auxiliary Comb..., EC | BIGSEAUKRI| EcoLowNOx: Auxiliary Combustion System for Efficient Combustion with Low-NOx emissions for Foundation Industries ,EC| BIGSEAAlan Robock; Lili Xia; Joshua Coupe; Jessica Stevens; Ryan F. Heneghan; Owen B. Toon; Owen B. Toon; Nicole S. Lovenduski; Samantha Stevenson; Charles G. Bardeen; Charles G. Bardeen; Eric D. Galbraith; Eric D. Galbraith; Cheryl S. Harrison; Cheryl S. Harrison; August Luna; Jonas Jägermeyr; Jonas Jägermeyr; Kim J. N. Scherrer;SignificanceNuclear conflict poses the chilling prospect of triggering abrupt global cooling, and consequently, severely reduced crop production. However, the impacts on marine fisheries are unknown. If agricultural yields fall on land, could we turn to the sea instead? Here, we show that agricultural losses could not be offset by the world’s fisheries, especially given widespread overfishing. Cold temperatures and reduced sunlight would decrease the growth of fish biomass, at worst as much as under unmitigated climate change. Although intensified postwar fishing could yield a small catch increase, dramatic declines would ensue due to overharvesting. However, effective prewar fisheries management would create a substantial buffer of fish in the ocean, greatly increasing the oceans’ potential contribution during a global food emergency.
Proceedings of the N... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020License: CC BY NC NDData sources: Diposit Digital de Documents de la UABProceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2008256117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020License: CC BY NC NDData sources: Diposit Digital de Documents de la UABProceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2008256117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu